Biochemical and Biophysical Research Communications, Vol.313, No.1, 185-192, 2004
Heat shock protein 72 binds and protects dihydrofolate reductase against oxidative injury
Although heat shock protein Hsp72 confers resistance to oxidative injury, the mechanisms are unknown. These studies demonstrate that Hsp72 protects dihydrofolate reductase (DHFR) against injury caused by the thiol oxidant monochloramine (NH2Cl). When exposed to NH2Cl, DHFR catalytic activity is impaired and SDS-PAGE migration retarded. These may be blocked by prior addition of Hsp72 or the folate analog methotrexate. Methotrexate binding to DHFR is diminished by oxidant treatment, preventable by prior Hsp72 incubation. Hsp72 also protects DHFR in IEC-18 cells following oxidant exposure. Hsp72 co-immuno-precipitates with DHFR, especially after partial oxidation. The DHFR-Hsp72 interaction is modulated by cofactor/substrate binding for both Hsp72 (ATP) and DHFR (methotrexate). Thiol oxidation of DHFR increases susceptibility for tryptic proteolysis. Preincubation of DHFR with Hsp72 prevents the NH2Cl-induced sensitivity to proteolysis. Thus, Hsp72 binds DHFR through enhanced protein-chaperone interactions upon oxidant exposure, a process that may protect against irreversible modification of DHFR catalytic and structural integrity. (C) 2003 Elsevier Inc. All rights reserved.