Biochemical and Biophysical Research Communications, Vol.329, No.3, 855-862, 2005
P120-GAP associated with syndecan-2 to function as an active switch signal for Src upon transformation with oncogenic ras
BALB/3T3 cells transfected with plasmids pcDNA3.1-[S-ras(Q(61)K)] of shrimp Penaeus japonicus were applied to reveal a complex of p I 20-GAP/syndecan-2 being highly expressed upon transformation. Of interest, most of the p I 20-GAP/syndecan-2 complex was localized at caveolae, a membrane microdomain enriched with caveolin-1. To confirm the molecular interaction between syndecan-2 and p120-GAP, we further purified p120-GAP protein from mouse brains by using an affinity column of HiTrap-RACK1 and expressed mouse RACK1-encoded fusion protein and mouse syndecan-2-encoded fusion protein in bacteria. We report molecular affinities exist between p120-GAP and RACK1, syndecan-2 and RACK1 as well as p120-GAP and syndecan-2. The selective affinity between p120-GAP and syndecan-2 was found to be sufficient to detach RACK1. The p120-GAP/syndecan-2 complex was demonstrated to keep Src tyrosine kinase in an activated form. On the other hand, the syndecan-2/RACK1 complex was found to have Src in an inactivated form. These data indicate that the p120-GAP/syndecan-2 complex at caveolae could provide a docking site for Src to transmit tyrosine signaling, implying that syndecan-2/p120-GAP functions as a tumor promoter upon transformation with oncogenic ras of shrimp P. japonicus. (c) 2005 Elsevier Inc. All rights reserved.