화학공학소재연구정보센터
Biochemical and Biophysical Research Communications, Vol.330, No.3, 673-684, 2005
Enhanced v-Src-induced oncogenic transformation in the absence of focal adhesion kinase is mediated by phosphatidylinositol 3-kinase
We showed previously [K. Moissoglu, I.H. Gelman, J. Biol. Chem. 278 (2003) 47946-47959] that oncogenic v-Src could induce 7- to 10-fold greater anchorage-independent growth (AIG) in FAK-null mouse embryo fibroblasts (MEF) compared to those expressing FAK. Here, we demonstrate that the enhanced AIG (eAIG) correlates with increased activation levels of phosphatidylinositol 3-kinase (PI3K) and not with changes in the protein levels of the p85 regulatory subunit of PI3K, PDK1 or PTEN- modulators, and/or mediators of PI3K activity. eAIG could be blunted selectively by treatment with the PI3K inhibitor, LY294002, or by overexpression of either the PI3K antagonist, PTEN, dominant-interfering alleles of PI3K or a downstream PI3K mediator, AKT, but not by the MEK inhibitor, PD98059, dominant-interfering alleles of MEK or the signal transducer and activator of transcription (STAT)-3. In contrast, RNAi-mediated knockdown of FAK resulted in increased v-Src-induced AIG. Expression of a constitutively active PI3K allele was sufficient to induce higher levels of AIG, whereas overexpression of v-Src produced only larger-sized colonies in soft agar. Interestingly, FAK was required for full activation of PI3K by PDGF whereas the activation of PI3K by insulin was significantly increased in FAK-/- cells. Thus, although FAK is dispensable for v-Src-induced oncogenic transformation in vitro, it may exert either positive or negative effects on signaling or motility depending on which pathways are activated in cancer cells. (c) 2005 Elsevier Inc. All rights reserved.