화학공학소재연구정보센터
Biochemical and Biophysical Research Communications, Vol.355, No.2, 398-403, 2007
Observation of multiple intermediates in alpha-synuclein fibril formation by singular value decomposition analysis
One of the most well known characteristics for Parkinson's disease (PD) is a polymerization of wild-type or mutant alpha-synuclein into aggregates and fibrils, commonly observed as Lewy bodies and Lewy neuritis in PD patients. Although numerous studies on alpha-synuclein fibrillation have been reported, the molecular mechanisms of aggregation and fibrillation are not well understood yet. In the present study, structural properties and propensities to form fibrils of wild-type, A30P, E46K, and A53T alpha-synucleins were investigated using fluorescence and circular dichroism (CD) methods. The results from these studies were analyzed using singular value decomposition (SVD) method which estimates a number of conformationaly independent species for a given process. The time-dependent CD spectra of the wild-type alpha-synuclein indicated a multi-step process in the fibril formation, and SVD analysis using the time-dependent CD spectra revealed that five or nine intermediates were formed at the early stage of fibrillation. (c) 2007 Elsevier Inc. All rights reserved.