Biochemical and Biophysical Research Communications, Vol.356, No.2, 374-380, 2007
Up-regulation of ras-GAP genes is reversed by a MEK inhibitor and doxorubicin in v-Ki-ras-transformed NIH/3T3 fibroblasts
Ras-GTPase-activating proteins (Ras-GAPs) have been implicated both as suppressors of Ras and as effectors in regulating cellular activities. To study whether Ras-GAPs have roles in tumor cell survival or not, mRNA levels of ras-related genes were measured in V-Ki-ras-transformed (DT) and the parental NIH/3T3 cells, using real-time PCR. mRNA levels of p120-Gap, Gap1(m), and PIK3CA were increased in DT cells compared with NIH/3T3 cells. p120-Gap, and PIK3CA genes were induced by addition of serum or epidermal growth factor to serum-starved DT cells. Three anti-cancer drugs, an ERK kinase (MEK) inhibitor PD98059, a topoisomerase 11 poison doxorubicin (adriamycin), and a histone deacetylase inhibitor trichostatin A, selectively blocked the overexpression of p120-Gap and Gap1(m) genes in DT cells. These drugs also caused reversion of DT cells to the adherent shape associated with growth arrest. Our results suggest that p120-Gap and Gap1(m). genes provide important biomarkers for cancer therapies. (c) 2007 Elsevier Inc. All rights reserved.