Biochemical and Biophysical Research Communications, Vol.269, No.1, 257-264, 2000
Effects of shear stress on eicosanoid gene expression and metabolite production in vascular endothelium as studied in a novel biomechanical perfusion model
This study investigated the effects of shear stress on gene expression of prostacyclin synthesis-related enzymes cyclooxygenases (COX-1 and COX-2), prostacyclin synthase (PGS), and thromboxane synthase (TXS) and their metabolites prostaglandin (PGI(2)) and thromboxane A(2) (TXA(2)) in endothelium of intact conduit vessels. Paired human umbilical veins were perfused at high/low shear stress (25/<4 dyn/cm(2)) at identical intraluminal pressure (20 mmHg) for 1.5, 3, or 6 hours in a computerized vascular model. High shear perfusion induced a significant, monophasic upregulation of PGS and TXS gene expressions after 6 hours. COX-1 and COX-2 mRNA showed a biphasic response with peaks at 1.5 and 6 hours, with a nadir level at 3 hours. Shear-induced gene expression was associated with a significantly greater accumulation of 6-keto prostaglandin F-1 alpha and TXA(2) in the perfusion medium. Thus, shear stress independently of perfusion pressure alters the expression of prostacyclin synthesis-related enzymes and the biosynthesis of their vasoactive metabolites.