화학공학소재연구정보센터
Polymer(Korea), Vol.14, No.4, 322-331, August, 1990
스티렌을 포함한 공중합체들과 폴리(비닐 메틸 에테르) 블렌드의 광산란에 의한 상용성
Miscibility of Bless of Poly(Vinyl Methyl Ether with Styrene-Containing Copolymers by Light Scattering
초록
α-methyl styrene, p-methyl styrene, 1-vinyl naphthalene과 2-vinyl naphthalene을 monomer feed 비를 기준으로 10% 및 20% 포함하는 styrene공중합체들을 합성하고 이들과 poly(vinyl methyl ether) (PVME)블렌드의 상용성을 연구하였다. 이들 copolymer 및 homopolymer들은 radical공중합으로 합성하였으며 분자량은 모두 20,000이하가 되도록 반응을 조절하였다. He/Ne laser 산란 장치로 cloud point를 측정하여 블렌드의 상용성을 측정하였다. 측정결과 모든 블렌드가 저임계용액 온도(LCST) 거동을 보였으나 PVME와의 상용성은 polystyrene>poly(styrene-co-α-methyl styrene)>poly(styrene-co-p -methyl styrene)>poly(styrene-co-1-vinyl naphthalene)>poly(styrene-co-2-vinyl naphthalene)순으로 나빠졌으며 이러한 경향은 공중합체에 포함된 styrene및 vinyl naphthalene 유도체들의 입체 장애 효과에 주로 기인되는 것으로 생각된다.
Miscibility of blends of poly(vinyl methyl ether) (PVME) with several styrene containing copolymers was investigated by measuring cloud points as a function of blend compositions with He/Ne laser scattering. Copolymers of styrene and α-methyl styrene, p-methyl styrene, 1-vinyl naphthalene or 2-vinyl naphthalene were synthesized by radical copolymerization. All the compositions of the four styrene- or vinyl naphthalene- derivatives in the copolymers were fixed at 10% and 20% by wt. in monomer feed ratio and the molecular weights of those copolymers obtained were below 20,000. Although all the blends studied in this work showed tower critical solution temperature(LCST) behavior. miscibility of the styrene-containing copolymers with PVME was shown better in the order of polystyrene>poly(styrene-co-α-methyl styrene)>poly(styrene-co-p-methyl styrene)>poly(styrene-co-1-vinyl naphthalene)> poly(styrene-co-2-vinyl naphthalene). The result may be attributed in part to their steric hindrance of the styrene or vinyl naphthalene derivatives in the copolymers.
  1. Robard A, Patterson D, Macromolecules, 10, 1021 (1977) 
  2. Patterson D, Robard A, Macromolecules, 11, 690 (1978) 
  3. Bank M, Leffingwell J, Thies C, Macromolecules, 4, 43 (1971) 
  4. Gelles RG, Frank CW, Macromolecules, 15, 741 (1982) 
  5. Nishi T, Kwei TK, Polymer, 16, 285 (1975) 
  6. Halary JL, Polymer, 25, 956 (1975) 
  7. Kang DP, Ha CS, Cho WJ, J. Polym. Sci. A: Polym. Chem., 27, 1401 (1989) 
  8. McMaster LP, Macromolecules, 5(6), 762 (1987)
  9. Roe RJ, Zin WC, Macromolecules, 13, 1221 (1980) 
  10. Zin WC, M.S. Thesis, Univ. Cinn. (1980)
  11. Lin JL, Roe RJ, Macromolecules, 20, 2168 (1987) 
  12. Rigby D, Lin JL, Roe RJ, Macromolecules, 18, 2269 (1985) 
  13. Lu FJ, Beneditt E, Hsu SL, Macromolecules, 16, 1525 (1983) 
  14. Danagarcia EI, J. Polym. Sci. B: Polym. Phys., 22, 107 (1984)
  15. Cowie JMG, Toporowski PM, J. Macromol. Sci.-Phys., B3, 81 (1969)
  16. Patterson D, Macromolecules, 2, 672 (1969) 
  17. Flory PJ, J. Am. Chem. Soc., 87, 1833 (1965) 
  18. Flory PJ, Discuss. Faraday Soc., 49, 7 (1970) 
  19. Sanchez IC, Lacombe RH, J. Phys. Chem., 80, 2352 (1976) 
  20. Lacombe RH, Sanchez IC, J. Phys. Chem., 80, 2568 (1976) 
  21. Hocker H, Blake GJ, Flory PJ, Trans. Faraday Soc., 67, 2251 (1971) 
  22. Roe RJ, J. Polym. Sci. B: Polym. Phys., 23, 917 (1985)