화학공학소재연구정보센터
Biochemical and Biophysical Research Communications, Vol.283, No.4, 743-749, 2001
Induction of oxidative stress by humic acid through increasing intracellular iron: A possible mechanism leading to atherothrombotic vascular disorder in blackfoot disease
Humic acid (HA), a potential toxin that has penetrated the drinking well water of blackfoot disease-endemic areas in Taiwan, has been implicated as an etiological factor of this disease. In this study, we investigated the effects of HA on the generation of reactive oxygen species (ROS) in cultured human umbilical vein endothelial cells (HUVECs). The generation of ROS was monitored by flow cytometry. Pretreatment of HUVECs with HA induced reactive oxygen species in a dose- and time-dependent manner. Xanthine oxidase inhibitor (Allopurinol), NADPH oxidase inhibitor (diphenylene iodomium) and calcium chelator (BAPTA) could not reduce the generation of ROS. Protein kinase C inhibitor (H7) could reduce the generation of ROS slightly, but the intracellular antioxidant glutathione monoethyl ester and the iron chelator desferrioxamine (DFO) could inhibit the generation of ROS completely. HA also enhanced the expression of ferritin and induced intracellular chelatable iron; however, HA reduced the expression of transferrin receptor. Pretreatment with DFO inhibited HA-mediated increases of ferritin synthesis and intracellular chelatable iron, but caused recovery of the inhibitory effect on transferrin receptor. Cotreatment with iron and HA induced more ROS and intracellular chelatable iron than iron or HA treatment alone. Furthermore, HA enhanced the accumulation of iron in endothelial cells. These data demonstrate that HA can increase the generation of ROS through enhancing the accumulation of intracellular iron. Taken together, our findings suggest that iron mediates HA-associated oxidative stress in endothelial cells, which may be a possible mechanism leading to atherothrombotic vascular injury observed for patients with blackfoot disease.