Biochemical and Biophysical Research Communications, Vol.284, No.3, 836-844, 2001
Identification of a novel phosphorylation site in human androgen receptor by mass spectrometry
An N-terminal hexahistidine-tagged full-length human androgen receptor protein (His(6)-hAR) was overexpressed and purified to apparent homogeneity in the presence of dihydrotestosterone (DHT) in our previous studies. In-gel trypsin digestion of the purified DHT-bound His(6)-hAR, and tryptic peptide mapping using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI/TOF-MS), detected a total of 17 peptides (21% coverage of hAR) with 9 peptides originating from the ligand-binding domain (LBD, 31% coverage of LBD). Amino acid sequencing analysis of the tryptic peptides from a separate in-gel digestion of the His(6)-hAR, using HPLC-coupled electrospray ionization ion trap mass spectrometry (LC/ESI-ITMS and MS/MS), unambiguously confirmed 21 peptides with 19% coverage of the hAR, of which 11 peptides originated from the LBD (35% coverage of LBD). These 21 peptides included 11 out of the 17 peptides detected by MALDI/TOF-MS. In addition, a novel serine phosphorylation site (Ser(308)) within the N-terminal transactivation domain of hAR was identified.
Keywords:human androgen receptor;tryptic peptide mapping;matrix-assisted laser desorption/ionization;HPLC-coupled electrospray ionization;amino acid sequencing;phosphorylation