화학공학소재연구정보센터
Biochemical and Biophysical Research Communications, Vol.291, No.3, 433-438, 2002
Doxorubicin and C-13 deoxydoxorubicin effects on ryanodine receptor gene expression
Chronic anthracycline administration to rabbits causes impairment of cardiac contractility and decreased gene expression of the calcium-induced calcium release channel of sarcoplasmic reticulum (SR), the ryanodine receptor (RYR2). The C-13 hydroxy metabolite (doxorubicinol), formed in the heart, has been hypothesized to contribute to anthracycline cardiotoxicity. C-13 deoxydoxorubicin is an analog unable to form the C-13 hydroxy metabolite. Therefore, doxorubicin, C-13 deoxydoxorubicin, or saline was administered to rabbits (I mg/kg iv twice weekly for 8 weeks). Left ventricular fractional shortening (LVFS) was decreased by chronic treatment with doxorubicin (28 +/- 2%; P < 0.05), but not C-13 deoxydoxorubicin (33 2%) compared to age-matched pair-fed controls. Doxorubicin, but not C-13 deoxydoxorubicin, caused a significant reduction (P < 0.02) in the ratio of RYR2/Ca-Mg ATPase (SERCA2) mRNA levels (0.57 +/- 0.1 vs 1.22 +/- 0.2, respectively) in the left ventricle. This suggests that doxorubicinol may contribute to the downregulation of cardiac RYR2 expression in chronic doxorubicin cardiotoxicity.