Biochemical and Biophysical Research Communications, Vol.303, No.1, 370-378, 2003
Characterization of Grp1p, a novel cis-Golgi matrix protein
A high copy suppressor screen with sec34-2, a temperature-sensitive mutant defective in the late stages of ER to Golgi transport, has resulted in the identification of a novel gene called GRP1 (also called RUD3). GRP1 encodes a hydrophilic yeast protein related to the mammalian Golgi matrix protein golgin-160. A large portion of the protein is predicted to form a coiled-coil structure. Although GRP1 is not essential for growth, the loss of Grp1p results in a growth defect at high temperature. GRP1 genetically interacts with several genes involved in vesicle targeting/fusion stages of ER to Golgi transport. Despite these interactions, pulse chase analysis using Grp1p-depleted cells did not reveal a significant delay in the transit of the vacuolar protease carboxypeptidase Y. Grp1p-depleted cells efficiently secreted invertase which was underglycosylated, suggesting some disturbance of Golgi function. Grp1p-GFP predominantly colocalizes with the cis-Golgi marker Och1p. Despite lacking a signal peptide and a significant stretch of hydrophobic amino acids, Grp1p pellets with membranes. It is extracted with I M NaCl or 0.1 M Na2CO3 (pH 11.0), but is surprisingly insoluble in 1% Triton X-100. Grp1p does not recycle to the ER when forward transport is blocked and a cis-Golgi marker (Och1p-HA), but not a trans-Golgi marker (Chs5p-HA), became dispersed in grp1Delta cells after 1.5 It incubation at 38.5degreesC. Together, these data suggest that Grp1p is a novel matrix protein that is involved in the structural organization of the cis-Golgi. (C) 2003 Elsevier Science (USA). All rights reserved.