Biomacromolecules, Vol.6, No.1, 255-261, 2005
Changes in protein secondary structure during gluten deformation studied by dynamic Fourier transform infrared spectroscopy
Fourier transform infrared (FT-IR) spectroscopy was used to monitor changes in the secondary structure of wheat prolamins, the main components of gluten, during mechanical deformation in a series of cycles of extension and relaxation. A sample derived from protein bodies isolated from developing grain showed a buildup of persistent beta-sheet structure. In gluten, the ratio of beta-sheet to random and beta-turn structures changed on extension. After the applied force was released, the sample recovered some of its original shape and structure, but the material became stiffer in consecutive extension cycles. The relationship between gluten structure and mechanical properties is discussed in terms of a model in which conversion of beta-turn to beta-sheet structure is a response to extension and a means by which elastic energy is stored in the system.