Biomacromolecules, Vol.6, No.2, 1140-1148, 2005
Gel formation of peptides produced by extensive enzymatic hydrolysis of beta-lactoglobulin
The purpose of the present study was to identify which peptides were responsible for enzyme-induced gelation of extensively hydrolyzed beta-lactoglobulin with Alcalase in order to gain insight into the mechanism of gelation. Dynamic rheology, aggregation measurements, isoelectrofocusing as well as chromatography and mass spectrometry were used to understand the gel formation. A transparent gel was formed above a critical concentration of peptides while noncovalently linked aggregates appear with increasing time of hydrolysis. Extensive hydrolysis was needed for gelation to occur as indicated by the small size of the peptides. Isoclectrofocusing was successful at separating the complex mixture, and 19 main peptides were identified with molecular weight ranging from 265 to 1485 Da. Only one fragment came from a beta-sheet rich region of the beta-lactoglobulin molecule, and a high proportion of peptides had proline residues in their sequence.