Biomacromolecules, Vol.6, No.6, 3189-3197, 2005
Kinetics of cold-set diffusion-limited aggregations of denatured whey protein isolate colloids
The CaCl2-induced cold-set aggregation kinetics of the denatured whey protein isolate (WPI) colloids has been investigated under dilute diffusion-limited cluster aggregation (DLCA) conditions, using small-angle light scattering. In particular, the structure factor, the scattered intensity at zero angle and the average radius of gyration have been measured for the aggregating system as a function of time. It is found that the fractal dimension of the clusters is d(f) = 1.85, in the range typical of clusters aggregated under DLCA conditions. The aggregation kinetics in this transition region can be described by a power law relation in the initial stage of the aggregation, but the exponent of the power law is equal to 0.7, i.e., significantly larger than 1/d(f) = 0.54, which is the typical value of the DLCA kinetics. Since it is found that the average gyration radius of the clusters has reached a value of 80 mu m, leading to a cumulative volume fraction of clusters equal to 0.25, it is legitimate to expect that the process is in the region of transition from aggregation to gelation. This confirmed by the fact that, at the later stage of the aggregation, the growth of the average cluster size further accelerates with time and eventually becomes explosive, leading to gelation. The observed aggregation kinetics has been compared with that reported in the literature from DLCA Monte Carlo simulations, and a good agreement has been found with the data corresponding to the transition region from aggregation to gelation. Numerical simulations using the Smoluchowski kinetic model have also been carried out in order to support the experimental findings.