Biomacromolecules, Vol.7, No.10, 2878-2881, 2006
Esterification of beta-chitin via intercalation by carboxylic anhydrides
beta-chitin is known to form intercalation complexes with aliphatic alcohols and amines. We found that it also forms complexes with carboxylic anhydrides. When the beta-chitin-acetic anhydride complex was heated to 105 degrees C, the hydroxyl groups of chitin were acetylated by a host-guest reaction, maintaining the host's crystal structure. Structures of complex and acetylated products were analyzed by X-ray diffraction, C-13 CP/MAS NMR, and infrared spectroscopy. The maximum degree of substitution (DS) was close to 1.0, suggesting regioselective esterification at the C6 position of chitin. Partially acetylated beta-chitin with a DS of 0.4 could incorporate various guest species that are difficult to be incorporated by original beta-chitin. In contrast, beta-chitin acetate with a DS of 1 lost the ability to form a complex. Intercalation complexes of beta-chitin with cyclic anhydrides (succinic and maleic) also underwent esterification by heating, and the products with a DS of similar to 1 dissolved in aqueous alkali, apparently as the result of the dissociation of introduced carboxyl groups. These phenomena are potentially useful in controlling the complexation ability of beta-chitin and the preparation of regioselectively esterified chitin derivatives.