Biomacromolecules, Vol.7, No.12, 3527-3533, 2006
Supramolecular polypseudorotaxanes composed of star-shaped porphyrin-cored poly(epsilon-caprolactone) and alpha-cyclodextrin
Star-shaped porphyrin-cored poly(epsilon-caprolactone) (SPPCL) was synthesized using a tetrahydroxyethyl-terminated porphyrin as a core initiator and stannous octoate as a catalyst in bulk at 120 degrees C. The molecular weight of assynthesized polymer could be adjusted linearly by controlling the molar ratio of epsilon-caprolactone to porphyrin core initiator, and the molecular weight distribution was reasonably narrow. Supramolecular polypseudorotaxanes were prepared by inclusion complexation of SPPCL with alpha-cyclodextrin (alpha-CD) and thoroughly characterized by means of FT-IR, H-1 NMR, C-13 CP/ MAS NMR, DSC, TGA, and WAXD. The results demonstrated that the porphyrincored polypseudorotaxanes formed through alpha-CD molecules threading onto the branch chains of star- shaped SPPCL polymers, and they had a channel-type crystalline structure. Meanwhile, the original crystallization of SPPCL polymers within the polypseudorotaxanes was completely suppressed in the alpha-CD cavities. Moreover, inclusion complexation between SPPCL and alpha-CD enhanced the thermal stability of both the guest SPPCL polymers and the host alpha-CD. Furthermore, both the SPPCL polymers and the polypseudorotaxanes showed similar fluorescent and UV-vis spectra compared with porphyrin core initiator. Consequently, this will not only provide potentially porphyrin-cored poly(epsilon-caprolactone) and its polypseudorotaxanes for photodynamic therapy but also improve the compatibility between poly(epsilon-caprolactone) and peptide drugs for drug delivery.