Biomacromolecules, Vol.8, No.2, 708-712, 2007
Interaction between proteins and cationic gemini surfactant
Surface tension, fluorescence, and circular dichroism (CD) methods have been used to investigate the interaction between cationic gemini surfactant 1,2-ethane bis(dimethyldodecylammonium bromide) (C12C2C12) and proteins including bovine serum albumin (BSA) and gelatin. Surface tension measurements show that the complexes of gelatin-C12C2C12 form more easily than that of BSA-C12C2C12. Addition of C12C2C12 has a different effect not only on the polarity of the microenvironment in BSA and gelatin systems but also on their fluorescence spectra. It can be seen from far-UV CD spectra that the alpha-helical network of BSA is disrupted and its content decreases from 41.7% to 27.6% while the random coil content of gelatin increases from 53.0% to 55.9% with increasing C12C2C12 concentration. The results from near-UV CD spectra show that the binding of C12C2C12 induces changes of the microenvironment around the aromatic amino acid residues and disulfide bonds of BSA at high C12C2C12 concentrations.