화학공학소재연구정보센터
Current Microbiology, Vol.34, No.4, 205-211, 1997
Serine319 and 321 are functional in isocitrate lyase from Escherichia coli
With site-directed mutagenesis, Ser319 and Ser321 in conserved stretch 3 of tetrameric isocitrate lyase from Escherichia coli were each substituted with alanine, cysteine, asparagine, or threonine in addition to simultaneous alanine/alanine substitutions. Besides their absolute conservation in all aligned isocitrate lyase sequences, the location of these serine residues, which flank a completely conserved proline, had been suggested in the active site in previous research by studies of photoinactivation of the enzyme by vanadate [Ko et al. (1992) J Biol Chem 267:91]. All substitutions for Ser321 and 319 except by threonine appreciably reduced the k(cat) of E. coli isocitrate lyase relative to that for wild-type (100) as follows: S319A, 0.4; S319C, 0.05; S319N, 0.01; S319T, 32.3; S321A, 2.9; S321C, 0.3; S321N, 0.1; S321T, 0.3; and S319A/S321A, 0, with little or no effect on the K-m for the substrate Mg2+-D-s-, isocitrate. The most active variant S319T exhibited threefold less activity than the wild-type enzyme; all variants assembled into tetramers. The S319T mutant isocitrate lyase was 100-fold more active than the S321T variant. This observation suggests that the requirement for a beta-hydroxymethyl group of serine in catalysis is less important at position 319 than at position 321. Although most singly substituted variants had very low isocitrate lyase activity, all variants harboring mutant isocitrate lyase of very low activity did grow on acetate as a sole carbon source albeit with longer doubling times and lag phases. Substitution of Pro320 by Ala, Asp, Gly, or His was highly detrimental to activity and increased the K-m for substrate 3.5-to 8-fold; this suggests that Pro fixes the location of adjacent Ser OH groups and facilitates substrate binding and catalysis. From these collective results, it is proposed that Ser319 and Ser321 are involved in E. coli isocitrate lyase catalysis, perhaps by stabilizing the postulated reaction intermediate succinate trianion in the aci-carboxylate form and the related transition state via hydrogen bonding.