화학공학소재연구정보센터
Polymer(Korea), Vol.15, No.3, 330-339, June, 1991
연신 Nylon 6 필름의 Chain Conformation 변화에 관한 새로운 적외분석
A New Infrared Analysis of the Changes in Chain Conformation of Drawn Nylon 6 Film
초록
여러조건으로 연신 및 열처리한 나일론 6의 적외선 흡수스펙트럼을 curve resolution함으로써 각 흡수band를 보다 정확히 identification할 수 있었으며 연신과 열처리과정에서 발생되는 chain conformation의 변화를 정량적으로 분석할 수 있었다. 본 실험에서 얻은 결과는 다음과 같다. 929와 1036㎝-1피크는 α-형 trans isomer의 흡수에 해당하고 950, 960, 그리고 1028㎝-1피크는 α-형 chain fold와 관계가 깊고 γ-형 결정 피크인 913, 974 및 1000㎝-1 피크중에서 974㎝-1 피크의 크기가 가장 크게 나타났다. 929㎝-1 피크는 α-결정의 양 뿐만 아니라 분자배향과도 밀접한 관계가 있어 연신비가 증가할수록 929㎝-1 피크의 흡수강도와 복굴절률과는 상당히 좋은 상관관계를 보였다. 동일 연신비를 갖는 열처리 시료에서 929㎝-1의 흡수강도와 밀도와는 아주 좋은 선형관계를 보였으며 이로부터 계산된 나일론 6의 완전비결정의 밀도는 1.1156g/cc 이었다. 미연신 열처리 시료의 비결정 특성 피크인 980㎝-1의 흡수강도와 밀도와의 상관관계로부터 계산된 나일론 6의 순수 결정의 밀도는 1.2252g/cc이었다.
After the band deconvolution of IR spectrum of nylon 6 films subjected to drawing and annealing under different conditions, the adsorption band of each component was identified and its exact absorbance could be obtained. The changes in chain conformation during drawing and annealing were analyzed in terms of the results of IR band deconvolution. The results obtained through this study are as follows: Both 929 and 1036 ㎝-1 bands could be assigned to α-form trans isomer. 950, 960, and 1028㎝-1 bands were assigned to α-form chain fold. γ-Form had absorption bands at 913, 974, and 1000㎝-1, of which 974㎝-1 band was the most intense. As draw ratio increased, there was a good correlation between absorbance of 929㎝-1 band and birefringence. There was a good linear relationship between absorbance of 929㎝-1 band and density for the same draw ratio. From this correlation, the amorphous density of unoriented specimen was estimated to be 1.1156g/cc. There was also a good linear relationship between absorbance of 980㎝-1 band assigned to amorphous region and density of undrawn annealed specimens. From this correlation the density of unoriented pure crystal was estimated to be 1.2252 g/cc.
  1. Homes DR, Bunn CW, Smith DJ, J. Polym. Sci., 17, 159 (1955) 
  2. Vogelsong DC, J. Polym. Sci. A: Polym. Chem., 1, 1055 (1963)
  3. Bradbury EM, Brown L, Elliott A, Parry DAD, Polymer, 6, 465 (1963) 
  4. Arimoto H, Ishibashi M, Hirai M, J. Polym. Sci. A: Polym. Chem., 3, 317 (1965)
  5. Kyotani M, Mitsuhashi S, J. Polym. Sci. A: Polym. Chem., 2(10), 1497 (1972)
  6. Miyake A, J. Polym. Sci., 10, 223 (1960) 
  7. Sandeman I, Keller A, J. Polym. Sci., 17, 401 (1956) 
  8. Illers KH, Haberkorn H, Simak P, Makormol. Chem., 158, 185 (1972)
  9. Hallos RS, Keighley JH, J. Polym. Sci., 19, 2309 (1975)
  10. Simak P, Makromol. Chem., 178, 2927 (1977) 
  11. Hallos RS, J. Appl. Polym. Sci., 29, 3909 (1983)
  12. 김갑진, 조원호, "열처리 조건에 대한 PET의 chain conformation 변화의 새로운 해석," 한국과학재단 연구보고서, April (1987)
  13. Wunderlich B, "Macromolecular Physics. Vol. 1," pp. 282-289, Academic Press, New York, NY (1973)
  14. Elad J, Schultz JM, J. Polym. Sci. B: Polym. Phys., 22, 781 (1984)
  15. Venkatesh GM, Bose PJ, Shah RV, Dweltz NE, J. Appl. Polym. Sci., 22, 2357 (1978)