- Previous Article
- Next Article
- Table of Contents
Polymer(Korea), Vol.15, No.4, 375-382, August, 1991
Aromatic Copolyamide의 합성 및 특성
The Synthesis and Properties of Aromatic Copolyamide
초록
Poly(p-phenylene terephthalamide)(PPTA)의 용매에 대한 용해도 특성을 개선하기 위하여 새로운 copolyamide를 합성하였는데 이것은 강대적으로 반응성이 낮은 3,4,3'',4''-benzophenone-tetracarboxylic dianhydride(BTDA)를 diamine과 먼저 반응시킨 후 terephthaloyl chloride(TPC)를 투입함에 의해 얻어졌고 이것을 가열하여 imide화 시켰다. TPC와 diamine-BTDA의 공중합반응계에서 thiamine 성분으로 m-phenylene thiamine(MPD)을 사용한 경우 중합반응계는 용액 상태 였으며, p-phenylene thiamine(PPD)의 경우에는 TPC 50mo1e 퍼센트 이상에서는 겔화가 일어났다. 특히 PPD-BTDA/TPC의 몰비가 1-0.05/0.95의 조성에서는 중합반응계가 액정을 형성하여 직접 방사원액으로의 사용가능성을 확인하였다. Diamine- BTDA/TPC를 조성별로 중합하고 각 고분자의 일반적 성질과 이미드화 반응, 조성에 따른 열적 성질과 유변학적 성질을 조사하였다. 유리전이온도는 350℃이상으로 확인되었으며 그 온도에서도 탄성율이 유지되는 내열성이 우수한 copolyamide의 합성이 가능하였다.
In order to improve the solubility of poly(p-phenylene terephthalamide) (PPTA), aromatic copolyamides were synthesized by adding terephthaloyl chloride(TPC) in a solution of thiamine-3,4,3'',4''- benzophenone tetracarboxylic dianhydride(diamine-BTDA) which was obtained by the reaction of BTDA with diamine and then this aromatic copolyamide was heated for imidation. The reaction system of polymerization was a solution in case of m-phenylenediamine(MPD) as the diamine component, but gel over 50 mole % of TPC in case of p-phenylenediamine(PPD). Especially, the liquid crystalline state was found out in the polymer system of the composition of PPD-BTDA/TPC 1-0.05/0.95 and it indicates the possibility of being used directly 3s the spin dope. The thermal and rheological properties of each polymer flbtained from the different compositions of diamine-BTDA/APC and the imidation reaction of them were investigated. It was verified that the glass transition temperature(Tg) of the copolyamide was over 350''~ and its Young''s modulus was maintained even over Tg.
- Penn L, Larsen F, J. Appl. Polym. Sci., 23, 59 (1979)
- 日本特開昭 59-144, 610
- McGregor CW, Karkoskai J, Shurboff JD, U.S. Patent, 4,290.929 (1982)
- Schmitt K, Gude F, Brundt S, U.S. Patent, 3,882,085 (1975)
- Fujisawa M, Plastics, 36, 34 (1985)
- Frost LW, Kesse I, J. Appl. Polym. Sci., 8, 1039 (1964)
- Kreuz JA, Endrey AL, Gay FP, Sroog CE, J. Polym. Sci. A: Polym. Chem., 4, 2607 (1966)
- Sroog CE, Endrey AL, Abramo SV, Berr CE, Edwards WM, Olivier KL, J. Polym. Sci. A: Polym. Chem., 3, 1373 (1965)
- Mittal KL, "Polyimides," Vol. 1, p. 429, Plenum Press, New York (1984)
- Varma IK, Goel RN, Varma DS, J. Polym. Sci. A: Polym. Chem., 17, 703 (1979)
- Frost LW, Bower GM, J. Polym. Sci. A: Polym. Chem., 1, 3135 (1963)
- Jones JI, Ochynski FW, Rackley FA, Chem. Ind., 1962 (1986)
- Edwards WM, Endrey AL, Br. Patent, 903,271 (1962)
- Takatsuka R, Uno K, Yoda F, Iwakura Y, J. Polym. Sci. A: Polym. Chem., 15, 1905 (1977)
- Evans JR, Orwoll RA, Tang SS, J. Polym. Sci. A: Polym. Chem., 23, 971 (1985)
- Saegusa Y, Niwa T, Nakamura S, J. Polym. Sci. C: Polym. Lett., 23, 337 (1985)
- Dine-Hart RA, Wright WW, Makromol. Chem., 143, 189 (1971)
- Baird DG, Ballman RL, J. Rheol., 23, 505 (1979)