Current Microbiology, Vol.47, No.4, 347-351, 2003
Isolation and characterization of ButA, a secondary glycine betaine transport system operating in Tetragenococcus halophila
Through functional complementation of an Escherichia coli mutant defective in glycine betaine uptake, we identified a single-component glycine betaine transporter from Tetragenococcus halophila, a moderate halophilic lactic acid bacterium. DNA sequence analysis characterized the ButA protein as a member of the betaine choline carnitine transporter (BCCT) family, that includes a variety of previously characterized compatible solute transporters such as OpuD from Bacillus subtilis, EctP and BetP from Corynebacterium glutamicum, and BetL from Listeria monocytogenes. When expressed in the heterologous host E. coli, the permease is specific for glycine betaine and does not transport the other osmoprotectants previously described for T. halophila (i.e. carnitine, choline, dimethylsulfonioacetate, dimethylsulfoniopropionate, and ectoine). In E. coli, statement of ButA is mainly constitutive and maximal uptake activity may result from a weak osmotic induction. This is the first study demonstrating a role for a permease in osmoregulation, and GB uptake, of a lactic acid bacterium.