화학공학소재연구정보센터
Current Microbiology, Vol.54, No.2, 79-84, 2007
Ethyl methanesulfonate mutagenesis-enhanced mineral phosphate solubilization by groundnut-associated Serratia marcescens GPS-5
Twenty-three bacterial isolates were screened for their mineral phosphate-solubilizing (MPS) ability on Pikovskaya and National Botanical Research Institute's phosphate (NBRIP) agar. The majority of the isolates exhibited a strong ability to solubilize hydroxyapatite in both solid and liquid media. The solubilization in liquid medium corresponded with a decrease in the pH of the medium. Serratia marcescens GPS-5, known for its biocontrol of late leaf spot in groundnut, emerged as the best solubilizer. S. marcescens GPS-5 was subjected to ethyl methanesulfonate (EMS) mutagenesis, and a total of 1700 mutants, resulting after 45 minutes of exposure, were screened on buffered NBRIP medium for alterations in MPS ability compared with that of the wild type. Seven mutants with increased (increased-MPS mutants) and 6 mutants with decreased (decreased-MPS mutants) MPS ability were isolated. All seven increased-MPS mutants were efficient at solubilizing phosphate in both solid and liquid NBRIP medium. Among the increased-MPS mutants, EMS XVIII Sm-35 showed the maximum (40%) increase in the amount of phosphate released in liquid medium compared with wild-type S. marcescens GPS-5, therefore, it would be a useful microbial inoculant in groundnut cultivation. EMS III Sm W, a nonpigmented mutant, showed the lowest solubilization of phosphate among the 6 decreased-MPS mutants.