화학공학소재연구정보센터
Polymer(Korea), Vol.15, No.4, 481-488, August, 1991
생체적합성과 생분해성을 갖는 Polypeptide Copolymers의 합성과 물성에 관한 연구 : 3. Polypeptide Hydrogels의 약물 조절 방출
Synthesis and Physical Properties of Biocompatible and Biodegradable Polypeptide Copolymers : 3. Polypeptide Hydrogels and Their Controlled Drug Release
초록
Poly(v-benzyl L-glutamate) (PBLG)지 측쇄에 polyethylene glycol(PEG) 또는 ethanolamine(EA)을 반응시켜 적심성이 서로 다른 몇가지 폴리펩티드 공중합체들 합성하였고, 이들 공중합체의 약물방출특성을 살펴보았다. 합성된 폴리펩티드공중합체의 수분흡수율은 공중합체중의 PEG또는 EA함량이 높아짐에 따라 증가하였다. PEG-PBLG-EA 공중합체로 부터의 5-fluorouracil의 방출속도는 PEG-PBLG 공중합체로 부터의 방출속도 보다 크게 나타났으며, 이러한 결과는 팽윤성의 폴리펩티드를 합성하고자 할때 사용되는 치환체로서는 PEG 보다도 EA가 더욱 효과적이라는 것을 암시한다. 한편, PEG를 가교시킨 PBLG공중합체막상에서는 5-fluorouracil의 방출에 기인하여 작은 pores들이 명료하게 나타나고 있음을 알 수 있었다.
Several copolypeptides having different swellabilities are synthesized by introducing polyethylene glycol (PEG) or ethanolamine(EA) to the side chains of poly (y-benzyl L-glutamate) (PBLG) and their drug release characteristics are examined. The degree of swelling of copolypeptide is increased by increasing PEG or EA content in the polymer. The release rate of 5-fluorouracil from the PEG-PBLG-EA copolymers was higher than that of the PEG-PBLG copolymers. This result indicates that EA is more effective than PEG for the preparation of the swellable polypeptides. It was observed, from the morphological study by scanning electron microscope, the pores are generated on the PEG-crosslinked PBLG, but not on tile PEG-grafted-PBLG.
  1. Hayashi T, Tabata Y, Nakajima A, Biomaterials, 5, 23 (1983)
  2. Kugo K, Uno T, Yamano H, Nishino J, Masuda H, Kobunshi Ronbunshu, 11, 731 (1985)
  3. Imanishi Y, Adv. Polym. Sci., 20, 1 (1985)
  4. Kang IK, Ito Y, Sisido M, Imanishi Y, Polym. J., 19, 1329 (1987) 
  5. Kang IK, Ito Y, Sisido M, Imanishi Y, Biomaterials, 9, 138 (1988) 
  6. Okano T, Uruno M, Sugiyama N, Shimada M, Shinohara I, Kataoka K, Sakurai Y, J. Biomed. Mater. Res., 20, 1035 (1986) 
  7. Hayashi T, Takeshima K, Kobatake E, Nikajima A, Kobunshi Ronbunshu, 11, 777 (1985)
  8. Marchant R, Hilton A, Hamlin C, Rabinovitch A, Slobodkin R, Anderson JM, J. Biomed. Mater. Res., 17, 301 (1983) 
  9. Kang IK, Kwon DR, Cho CS, Sung YK, J. Korean Chem. Soc., 34, 109 (1990)
  10. Kang IK, Kwon DR, Cho CS, Sung YK, J. KOSOBME, 10, 237 (1989)
  11. Kang IK, Ito Y, Sisido M, Imanishi Y, Int. J. Biol. Macromol., 10, 169 (1988) 
  12. Kang IK, Ito Y, Sisido M, Imanishi Y, Biomaterials, 9, 349 (1988) 
  13. Rabek JF, "Experimental Methods in Polymer Chemistry," John Wiley and Sons, Ltd., p. 55 (1980)
  14. Korsmeyer RW, Peppas NA, J. Control. Release, 1, 89 (1984) 
  15. Kost J, Langer R, "Hydrogels in Medicine and Pharmacy," CRC Press, vol. 1, p. 1-25 (1986)
  16. Peppas NA, Mikos AG, "Hydrogels in Medicine and Pharmacy," CRC Press, Vol. 3, p. 95-108 (1987)
  17. Langer R, Peppas NA, Biomaterials, 2, 201 (1981) 
  18. Peppas NA, "Release of Bioactive Agents from Swellable Polymers: Theory the Experiments," in Recent Advances in Drug Delivery Systems, J.M. Anderson and S.W. Kim, Eds., Plenum Press, New York, p. 279 (1984)