화학공학소재연구정보센터
Electrophoresis, Vol.23, No.4, 591-595, 2002
Rapid microwell polymerase chain reaction with subsequent ultrathin-layer gel electrophoresis of DNA
Large-scale genotyping, mapping and expression profiling require affordable, fully automated high-throughput devices enabling rapid, high-performance analysis using minute quantities of reagents. In this paper, we describe a new combination of microwell polymerase chain reaction (PCR) based DNA amplification technique with automated ultrathin-layer gel electrophoresis analysis of the resulting products. This technique decreases the reagent consumption (total reaction volume 0.75-1 muL), the time requirement of the PCR (115-20 min) and subsequent ultrathin-layer gel electrophoresis based fragment analysis (5 min) by automating the current manual procedure and reducing the human intervention using sample loading robots and computerized real time data analysis. Small aliquots (0.2 muL) of the submicroliter size PCR reaction were transferred onto loading membranes and analyzed by ultrathin-layer gel electrophoresis which is a novel, high-performance and automated microseparation technique. This system employs integrated scanning laser-induced fluorescence-avalanche photodiode detection and combines the advantages of conventional slab and capillary gel electrophoresis. Visualization of the DNA fragments was accomplished by "in migratio" complexation with ethidium bromide during the electrophoresis process also enabling real time imaging and data analysis.