Electrophoresis, Vol.23, No.20, 3487-3495, 2002
Towards a microchip-based chromatographic platform. Part 1: Evaluation of sol-gel phases for capillary electrochromatography
Silica monolithic columns suitable for implementation on microchips have been evaluated by ion-exchange capillary electrochromatography. Two different silica monoliths were created from the alkyl silane, tetramethyl orthosilicate (TMOS), by introducing a water-soluble organic polymer, poly(ethylene oxide) (PEO), with varying molecular weights into the prehydrolyzed sol. Silica monoliths created using 10 kDa PEO were found to have a much more closed gel structure with a smaller percentage of pores in the mum size range than gels created using 100 kDa PEO. Additionally, the size of the mesopores in the 100 kDa PEO monolith was 5 nm, while those in the 10 kDa PEO gel were only 3 rim. This resulted in a strong dependence of the electroosmotic flow (EOF) on the ionic strength of the background electrolyte, with substantial pore flow through the nm size pores observed in the 10 kDa PEO gel. The chromatographic performance of the monolithic columns was evaluated by ion-exchange electrochromatography, with ion-exchange sites introduced via dynamic coating with the cationic polymer, poly(diallyldimethylammonium chloride) (PDDAC). Separating a mixture of inorganic anions, the 10 kDa PEO monolithic columns showed a higher effective capacity than the 100 kDa PEO column.
Keywords:ion-exchange capillary electrochromatography perfusive flow;pore flow;silica monolithic column;sol-gel phase