화학공학소재연구정보센터
Electrophoresis, Vol.24, No.24, 4189-4196, 2003
Piperazine quaternary diammonium salts as additives to background electrolytes in capillary zone electrophoresis
The differential behavior of five different quaternary mono- and diammonium salts, among the 18 investigated, in modulating the electroendoosmotic flow (EOF) and analyte separations in capillary zone electrophoresis is evaluated. It is found that quaternary diammonium salts with positive charges separated by more than four carbon atoms, while exhibiting a very strong affinity for chromatographic silica beads, to the 2 point of exhibiting Rf values close to zero, display, on the contrary, a very poor affinity for the silica wall of capillaries. Compounds separated only by a C-2 unit (i.e., 1,4-dialkyl-1,4-diazoniabicyclo[2,2,2,]octane, salts 17 and 18) show high Rf values due to 3 strong ion pair association. The unique behavior of quaternary monoammonium salts possessing an iodinated alkyl (butyl or octyl) tail (i.e., 1, 6, and 7) is attributed to their ability to be covalently affixed to the silica wall via alkylation of ionized silanols at alkaline pH values. They thus strongly modulate and typically invert the EOF, even when not present in the background electrolyte. On the contrary, all diammonium salts, devoid of such alkyl tails, are unable to modulate the EOF and to prevent analyte binding to the silica wall, since they are rapidly removed from the wall by the voltage gradient. However, if added in small amount to the background electrolyte, they offer excellent separations of mixtures of very similar organic acids and prevent any interaction with the capillary wall.