Electrophoresis, Vol.25, No.17, 3040-3047, 2004
High reproducibility of large-gel two-dimensional electrophoresis
Two-dimensional gel electrophoresis (2-DE) facilitates the separation of thousands of proteins from highly complex protein mixtures and has become a central method in proteomics in recent years. In the present study, we examined the technical variability of large 2-DE gels with respect to sample preparation, electrophoresis procedure, data acquisition, and biological variation by analyzing a disease (Huntington's disease) and control state with a commercially available software package, PROTEOMWEAVER(TM). Scatter plots and correlation coefficients were obtained to quantify both technical and biological variation. Even 2-DE gels run separately in both dimensions yielded correlation coefficients around 0.88 and deviations from the mean close to 20% for low-intensity spots. This indicates a high technical reproducibility of the 2-DE procedure developed in our laboratory. Variability within a biological condition was low and comparable to technical variation (at least 0.87). Two-dimensional (2-D) gels obtained from samples of different biological conditions (health vs. disease) achieved a variability similar to intracondition and technical variability. These findings highlight the importance of multiple gel and spot-by-spot comparisons to identify biological significant changes. Minor errors introduced by technical and biological variation allow a comparison of all gels within a study which facilitates the tackling of complex biological problems.
Keywords:Huntington's disease;proteomics;reproducibility;two-dimensional gel electrophoresis;variability