화학공학소재연구정보센터
Electrophoresis, Vol.28, No.1-2, 3-14, 2007
Kohlrausch regulating function and other conservation laws in electrophoresis
The Kohlrausch regulating function (KRF) is a conservation law (conservation function), which is held in electrophoresis and which enables calculation of the so-called adjusted concentrations of constituents. The KRF is not the only conservation function and, depending on the complexity of the electrophoretic system, other conservation laws may be obeyed having a broader range of applicability. The conservation laws are tightly related to system eigennnobilities and system zones (system peaks). In principle, no system eigenmobility is exactly zero, but in most practical cases at least one system's eigenmobility is close to zero. The existence of the close-to-zero eigenmobility inherently points to the existence of a conservation function and a system zone which is stationary. The stationary system zone is called injection zone, stagnant zone, water peak, or solvent dip. Electrophoretic (electromigration) systems can be divided into two types: (i) conservation systems, in which the absolute value of at least one system eigenmobility is close to zero and where at least one conservation law is obeyed and (ii) nonconservation systems, where no system eigenmobility is close to zero and no conservation law is obeyed. The paper reviews work dealing with conservation functions in electromigration, derives some "historical" conservation functions in a new way, derives several conservation functions for systems of multivalent electrolytes, and discusses electrophoretic systems that have nonconservation behavior. In some typical instances, the conservation functions are simulated by means of a dynamic simulation tool and depicted graphically.