Polymer(Korea), Vol.16, No.2, 235-241, March, 1992
Maleic anhydride-2-Vinylnaphthalene과 EPDM으로 된 새로운 엔지니어링 플라스틱의 합성과 물성
Synthesis and Properties of the Newly Designed Engineering Plastic from Maleic anhydride-2-Vinylnaphthalene with EPDM
초록
여러 가지 용매존재하에서 benzoyl peroxide(BPO)를 개시제로 사용하여 ethylene-propylene-diene terpolymer(EPDM)에 maleic anhydride(MAH)와 2-vinylnaphthalene(2-VN)을 주어진 온도에서 그라프트 공중합하였다. 합성한 MAH-EPDM-2-VN(MAEV2) 그라프트 공중합체는 IR 분광법으로 확인하였다. 그라프트 공중합시 MAH에 대한 2-VN의 몰비, 용매, 중합 시간, 중합 온도, 개시제 농도, 그리고 EPDM 농도등의 영향을 조사하였다. 그라프트 효율은 MAH에 대한 2-VN의 몰비값이 1.0일 때. 중합 온도는 70℃ 그리고 용매는 toluene일 때 가장 좋은 값을 나타내었다. EPDM 농도 변화에 따른 그라프트 효율은 EPDM의 함량이 증가할수록 증가하였다. MAEV2와 ABS의 열분해 온도는 각각 424℃와 373℃이었다. MAEV2의 내열성과 내광성은 ABS 보다 우수하였다.
The graft coplymerizations of maleic anhydride(MAH) and 2-vinylnaphthalene(2-VN) onto ethylene-propylene-diene terpolymer(EPDM) were carried out with benzoyl peroxide (BPO) as an initiator in several solvents at given temperatures. The synthesized graft copolymer, [(MAEV2)], was identified by IR spectroscopy. The effects of mole ratio of 2-VN to MAH, solvents, reaction time, reaction temperature, initiator concentration and EPDM concentration on graft copolymerization were examined. The maximum grafting efficiency was obtained at 1 : 1 mole ratio of 2-VN to MAH, 70℃ and in toluene. It was observed that grafting efficiency increased with increasing EPDM concentration. Decomposition temperatures of MAEV2 and ABS were 424℃ and 330℃, respectively. The thormal stability and light resistance of MAEV2 were better than those of ABS.
- Saunders KJ, "Organic Polymer Chemistry," Chapman and Hall, London (1977)
- Mukerjee AK, Gupta BD, J. Macromol. Sci.-Chem., A19(7), 1069 (1983)
- Kang DI, Ha CS, Cho WJ, Eur. Polym. J., in print (1991)
- Morimoto M, J. Appl. Polym. Sci., 26, 261 (1981)
- Meredith CL, Barret RE, Bishop WH, U.S. Patent, 3,538,190 (1970)
- Morimoto M, Sanijiki T, Horiike H, Oyamata T, U.S. Patent, 3,584,496 (1976)
- Morimoto M, Sanijiki T, Horiike H, Oyamata T, U.S. Patent, 3,876,730 (1975)
- Morimoto M, Sanijiki T, Horiike H, Furuta M, U.S. Patent, 3,904,709 (1975)
- Wheian A, Lee KS, "Rubber Technology and Rubber Composites," Appl. Sci. Publ. Vol. 2, Chap. 4, London (1985)
- Srinibasan KSJ, Radhakrishnan N, Kuttalmpillai M, J. Appl. Polym. Sci., 37, 1551 (1989)
- Allen RD, J. Elastom. Plast., 15, 19 (1983)
- Mark HF, Bikales NM, Overberger CG, Menges G, "Encyclopedia of Polymer Science and Engineering," 2nd ed., Vol. 6, p. 522, Wiley (1986)
- Park DJ, Cho WJ, Polym.(Korea), 14(1), 1 (1990)
- Dipak A, Raval K, J. Appl. Polym. Sci., 35, 2201 (1988)
- Bae YO, Ha CS, Cho WJ, Eur. Polym. J., 27(2), 121 (1991)
- Omichi H, Stannett VT, J. Appl. Polym. Sci., 30, 2655 (1968)
- Voek JF, J. Polym. Sci., 18, 123 (1955)
- Mukerjee AK, J. Appl. Polym. Sci., 30, 3059 (1985)
- Munari S, Tealdo G, Vigo F, Rossi C, Eur. Polym. J., 4, 241 (1968)
- Dilli S, Garnett JL, J. Appl. Polym. Sci., 11, 859 (1967)
- Burchill PJ, Pinkerton DM, Stacewicz RH, J. Macromol. Sci.-Chem., A14(1), 79 (1980)
- Odian G, Acker T, Sobel M, J. Appl. Polym. Sci., 7, 245 (1963)
- Treherne BL, Elastometrics, May, D25 (1982)
- Stiles WS, Burch JM, Opt. Acta, 2, 168 (1955)
- Speranskay NI, Opt. Spectroscopy, 7, 424 (1959)
- Schofield F, Nat'l Paint, Varnish, Lacqure Assoc. Scient. Soc. Circular, 644 (1943)