화학공학소재연구정보센터
Polymer(Korea), Vol.16, No.2, 235-241, March, 1992
Maleic anhydride-2-Vinylnaphthalene과 EPDM으로 된 새로운 엔지니어링 플라스틱의 합성과 물성
Synthesis and Properties of the Newly Designed Engineering Plastic from Maleic anhydride-2-Vinylnaphthalene with EPDM
초록
여러 가지 용매존재하에서 benzoyl peroxide(BPO)를 개시제로 사용하여 ethylene-propylene-diene terpolymer(EPDM)에 maleic anhydride(MAH)와 2-vinylnaphthalene(2-VN)을 주어진 온도에서 그라프트 공중합하였다. 합성한 MAH-EPDM-2-VN(MAEV2) 그라프트 공중합체는 IR 분광법으로 확인하였다. 그라프트 공중합시 MAH에 대한 2-VN의 몰비, 용매, 중합 시간, 중합 온도, 개시제 농도, 그리고 EPDM 농도등의 영향을 조사하였다. 그라프트 효율은 MAH에 대한 2-VN의 몰비값이 1.0일 때. 중합 온도는 70℃ 그리고 용매는 toluene일 때 가장 좋은 값을 나타내었다. EPDM 농도 변화에 따른 그라프트 효율은 EPDM의 함량이 증가할수록 증가하였다. MAEV2와 ABS의 열분해 온도는 각각 424℃와 373℃이었다. MAEV2의 내열성과 내광성은 ABS 보다 우수하였다.
The graft coplymerizations of maleic anhydride(MAH) and 2-vinylnaphthalene(2-VN) onto ethylene-propylene-diene terpolymer(EPDM) were carried out with benzoyl peroxide (BPO) as an initiator in several solvents at given temperatures. The synthesized graft copolymer, [(MAEV2)], was identified by IR spectroscopy. The effects of mole ratio of 2-VN to MAH, solvents, reaction time, reaction temperature, initiator concentration and EPDM concentration on graft copolymerization were examined. The maximum grafting efficiency was obtained at 1 : 1 mole ratio of 2-VN to MAH, 70℃ and in toluene. It was observed that grafting efficiency increased with increasing EPDM concentration. Decomposition temperatures of MAEV2 and ABS were 424℃ and 330℃, respectively. The thormal stability and light resistance of MAEV2 were better than those of ABS.
  1. Saunders KJ, "Organic Polymer Chemistry," Chapman and Hall, London (1977)
  2. Mukerjee AK, Gupta BD, J. Macromol. Sci.-Chem., A19(7), 1069 (1983)
  3. Kang DI, Ha CS, Cho WJ, Eur. Polym. J., in print (1991)
  4. Morimoto M, J. Appl. Polym. Sci., 26, 261 (1981) 
  5. Meredith CL, Barret RE, Bishop WH, U.S. Patent, 3,538,190 (1970)
  6. Morimoto M, Sanijiki T, Horiike H, Oyamata T, U.S. Patent, 3,584,496 (1976)
  7. Morimoto M, Sanijiki T, Horiike H, Oyamata T, U.S. Patent, 3,876,730 (1975)
  8. Morimoto M, Sanijiki T, Horiike H, Furuta M, U.S. Patent, 3,904,709 (1975)
  9. Wheian A, Lee KS, "Rubber Technology and Rubber Composites," Appl. Sci. Publ. Vol. 2, Chap. 4, London (1985)
  10. Srinibasan KSJ, Radhakrishnan N, Kuttalmpillai M, J. Appl. Polym. Sci., 37, 1551 (1989) 
  11. Allen RD, J. Elastom. Plast., 15, 19 (1983)
  12. Mark HF, Bikales NM, Overberger CG, Menges G, "Encyclopedia of Polymer Science and Engineering," 2nd ed., Vol. 6, p. 522, Wiley (1986)
  13. Park DJ, Cho WJ, Polym.(Korea), 14(1), 1 (1990)
  14. Dipak A, Raval K, J. Appl. Polym. Sci., 35, 2201 (1988) 
  15. Bae YO, Ha CS, Cho WJ, Eur. Polym. J., 27(2), 121 (1991) 
  16. Omichi H, Stannett VT, J. Appl. Polym. Sci., 30, 2655 (1968) 
  17. Voek JF, J. Polym. Sci., 18, 123 (1955) 
  18. Mukerjee AK, J. Appl. Polym. Sci., 30, 3059 (1985) 
  19. Munari S, Tealdo G, Vigo F, Rossi C, Eur. Polym. J., 4, 241 (1968) 
  20. Dilli S, Garnett JL, J. Appl. Polym. Sci., 11, 859 (1967) 
  21. Burchill PJ, Pinkerton DM, Stacewicz RH, J. Macromol. Sci.-Chem., A14(1), 79 (1980)
  22. Odian G, Acker T, Sobel M, J. Appl. Polym. Sci., 7, 245 (1963) 
  23. Treherne BL, Elastometrics, May, D25 (1982)
  24. Stiles WS, Burch JM, Opt. Acta, 2, 168 (1955)
  25. Speranskay NI, Opt. Spectroscopy, 7, 424 (1959)
  26. Schofield F, Nat'l Paint, Varnish, Lacqure Assoc. Scient. Soc. Circular, 644 (1943)