Polymer(Korea), Vol.16, No.4, 436-442, July, 1992
셀룰로오스성 물질의 효소적 가수분해에 의한 당생성 메카니즘; 셀룰라아제의 Component효소에 의한 셀룰로오스의 효소적 가수분해반응의 속도론적 연구
Sugar Production Mechanism by the Enzymatic Hydrolysis of Cellulosic Materials; Kinetic Study of the Enzymatic Hydrolysis of Cellulose by Cellulase Components
초록
Trichoderma viride의 셀룰라아제로부터 CMCase와 Avicelase를 분리하여 이들 component 효소에 의한 몇 가지 셀룰로오스성 물질의 가수분해반응을 속도론적으로 연구하였다. CMCase와 Avicelase는 DEAE-Sephadex A 수지를 사용하여 관크로마토그래피법으로 분리하였다. 각 효소에 의한 가수분해반응은 유사일차반응의 합으로 표현된 속도식으로 나타낼 수 있었다. 그리고 이러한 속도식을 이용하여 가수분해반응에 미치는 기질의 표면적 및 결정성의 효과를 조사하였다. 실험결과로부터 두 component효소에 의한 가수분해속도와 초기반응에 의존하는 기질의 농도가 기질의 표면적에 비례함을 알 수 있었다. 그러나 후기 가수분해반응은 주로 Avicelase에 의해 진행되며, 기질의 결정성이 이 반응에 크게 영향을 주었다.
The kinetic study of the hydrolysis of some cellulosic materials by CMCase and Avicelase isolated from Trichoderma viride cellulase was performed. These two components, CMCase and Avicelase, were separated by a column chromatographic method using DEAE-Sephadex A resin. All hydrolysis reactions of cellulose by respective components could be described by the summation of two parallel first-order reactions. Two reactions combined was separated by the reaction time. With the application of this kinetic equation, the effects of the crystallinity and surface area of cellulose on hydrolysis reaction were examined. From the results, it was found that the initial reaction rate and the concentration of substrate hydrolyzed in the initial reaction are proportional to the surface area of the substrates. But the hydrolysis in later reaction time appeared by Avicelase and depended on the crystallinity of the substrates.
- Ladisch MR, Lin KW, Voloch M, Tsao GT, Enzyme Microb. Technol., 5(2), 82 (1983)
- Eriksson KE, Pettersson B, Eur. J. Biochem., 51, 193 (1975)
- Beldman G, Voragen AGJ, Rombouts FM, Pilnik W, Biotechnol. Bioeng., 31, 173 (1988)
- Wood TM, McCrae SI, Biochem. J., 171, 61 (1978)
- Chen CM, Gritzali M, Stafford DW, Bio-Technology, 5, 274 (1987)
- Fan LT, Lee YH, Beardmore DH, Adv. Biochem. Eng., 14, 102 (1980)
- Klyosov AA, Mitkevich OV, Sinitsyn AT, Biochemistry, 25, 540 (1986)
- Converse AO, Matsuno R, Tanaka M, Taniguchi M, Biotechnol. Bioeng., 32, 38 (1988)
- Ryu DDY, Lee SB, Biotechnol. Bioeng., 24, 1047 (1982)
- Fan LT, Lee YH, David H, Biotechnol. Bioeng., 27, 177 (1980)
- Okazaki M, Moo-Young M, Biotechnol. Bioeng., 20, 637 (1987)
- Holtzapple MT, Caram HS, Humphrey AE, Biotechnol. Bioeng., 26, 753 (1984)
- Brandt S, Hontz L, Mandels M, AIChE Symp. Ser., 69, 127 (1973)
- Sattler W, Esterbauer H, Glatter O, Steiner W, Biotechnol. Bioeng., 33, 1221 (1989)
- Segal L, Creely JJ, Martin AE, Conrad CM, Text. Res. J., 29, 786 (1959)
- Lowry OH, Rosebrough NJ, Farr AE, Randall RJ, J. Biol. Chem., 193, 265 (1951)
- Berghem LER, Pettersson LG, Eur. J. Biochem., 37, 21 (1973)
- Beldman G, Searle-van Leeuwen MF, Rombouts FM, Voragen FGJ, Eur. J. Biochem., 146, 301 (1985)
- Somogyi M, J. Biol. Chem., 195, 19 (1952)