Polymer(Korea), Vol.16, No.5, 563-569, September, 1992
메틸비닐케톤을 포함하는 전구체 중합체들의 합성과 삼염화산소산인으로 처리했을 때의 전기전도도
Syntheses of Precursor Polymers Containing Methyl Vinyl Ketone and Their Electrical Conductivities on Being Treated with Phosphorous Oxychloride
초록
메틸비닐케톤(MVK)을 포함하는 중합체들을 합성하고 이들과 삼염화산소산인(POCl3)을 반응시켜 얻은 전도성고분자의 전기전도도를 측정하였다. 메틸비닐케톤(MVK)을 3가지 다른 농도의 AIBN을 개시제로 하여 benzene용매하에 50℃에서 7시간 각각 라디칼중합하여 얻은 중합체를 Cannon-Fenske 점도계로 측정한 중합체의 고유점도[η]와 GPC로 얻은 중량평균분자량(Mw)으로부터 [η]=7.7×10-5Mw0.72와 같은 관계를 얻었다. 또한 4가지 다른 몰비(0.5∼5.0[MVK]/[MA])의 메틸비닐케톤(MVK)과 메틸아크릴레이트(MA)를 AIBN을 개시제로 하여 50℃에서 라디칼 공중합하여 공중합체(poly(MVK-co-MA))를 합성하였다. 이 공중합반응에 대한 단량체 반응성비를 Kelene-Tudos법으로 결정하였다; r1(MVK)=1.85, r2(MA)=0.99, PMVK와 poly(MVK-co-MA)를 0℃에서, 클로로포름하에서 POCl3와 반응시켜 전도성고분자인 폴리(아세틸아세틸렌)유도체들을 얻었다. 이들 전도성고분자들은 THF 및 DMF에 용해되었으며, 적외선 및 자외선 분광법에 의해 분자내 이중결합이 생성된 것을 확인하였다. 4-point probe DC방법으로 이들의 전도도를 측정한 결과 전구체고분자인 PMVK는 분자량이 증가할수록 또한 POCl3와의 반응시간이 증가할수록 전도도는 증가하였는데 10-7∼10-9Scm-1 정도의 값을 보였다. POCl3와 반응시킨 공중합체의 경우는 PMVK에 비해 약간 낮은 값을 보였으며, 공중합체내 MA단위의 함량이 증가할수록 전도도는 감소하였다.
Electrical conductivities of polymers containing methyl vinyl ketone(MVK) on being treated with phosphorous oxychloride, were investigated. Poly(methyl vinyl ketone)(PMVK)s were synthesized with three different concentrations of AIBN in benzene at 50℃ ; Intrinsic viscosity(η) of PMVK measured with a Cannon-Fenske viscometer was correlated with weight-average molecular weight by GPC as the following Mark-Houwink-Sakurada relationship ; [η]=7.7×10-5Mw0.72. Four types of copolymers with MVK and methyl acrylate(MA), poly(MVK-co-MA)'s having different monomer feed ratios(0.5∼5.0[MVK]/[MA]) were obtaioned by radical copolymerization with 3.7×10-4M of AIBN at 50℃. The reactivity ratio of each monomer was determined by the Kelen-Tudos method as follow ; r1(MVK)=1.85, r2(MA)=0.99. Poly(acetylacetylene) derivatives were obtained by reacting PMVK or poly(MVK-co-MA) with phosphorous oxychloride in chloroform at 0℃ under various reaction times. The conductive polymers were soluble in THF and DMF. The formation of double bond in the polymers was identified by IR and UV spectra. Their conductivities were measured by 4-point probe DC method. The conductivity of the poly(acetylacetylene) lay in the range of 10-7∼10-9Scm-1 and increased with increasing molecular weight of PMVK and POCl3 treatment time. It was found that the conductivity of the POCl3-treated copolymer was slightly lower than that of PMVK and decreased with increasing MA content in the copolymers.
- Gibson HW, "Handbook of Conducting Polymers," Marcel Dekker, Inc., New York (1986)
- Chien JCW, "Polyacetylene," Academic Press, Inc. (1984)
- Baughman RH, Bredas JL, Chance RR, Elsenbaumer RL, Shacklette LW, Chem. Rev., 82, 209 (1982)
- Masuda T, Higashimura T, Adv. Polym. Sci., 81, 121 (1986)
- Masuda T, Higashimura T, Accounts Chem. Res., 17, 51 (1984)
- Shirakawa H, Ikeda S, Polym. J., 2, 231 (1971)
- Ito T, Shirakawa H, Ikeda S, J. Polym. Sci. A: Polym. Chem., 12, 11 (1974)
- Gibson HW, Baily FC, Epstein AJ, Rommelmann H, Kaplan S, Harbour J, Yang XQ, Tanner DB, Pochan JM, J. Am. Chem. Soc., 105, 4417 (1983)
- Wagner G, Pure Appl. Chem., 49, 443 (1977)
- Masuda T, Higashimura T, Macromolecules, 7, 728 (1974)
- Lin P, Dudek L, J. Polym. Sci. A: Polym. Chem., 18, 2869 (1980)
- Yamamoto T, Sanechika K, Yamamoto A, J. Polym. Sci. C: Polym. Lett., 8, 9 (1980)
- Kausawa KC, Diaz AF, Gill WD, Grant DM, Street GB, Gardini GP, Kwak JF, Synth. Met., 1, 329 (1980)
- Rajaraman LL, Balasabramanian M, Nanjan MJ, Curr. Sci., 49, 1010 (1980)
- Wnek GE, Chien JCW, Karasz FE, Lillya CP, Polymer, 20, 1441 (1979)
- Kossmehl G, Wallis J, Makromol. Chem., 183, 331 (1982)
- Kanabe M, Okawara M, J. Polym. Sci. A: Polym. Chem., 1(6), 1058 (1968)
- Ogawa T, Cedeno R, Herrera ET, Makromol. Chem., 180, 785 (1979)
- Ogawa T, Cedeno R, Herrera ET, Almaraz B, Inoue M, Conductive Polymers, R.B. Seymour Ed., Plenum Press, New York, 85 (1981)
- Kim DY, Kim YS, Park DK, Cho SJ, Ha CS, Cho WJ, J. Polym. Sci. A: Polym. Chem., in print (1992)