Journal of Applied Microbiology, Vol.89, No.6, 979-991, 2000
Site-specific restriction endonucleases in cyanobacteria
Aim: Planktic cyanobacteria were screened for endodeoxyribonucleases. Principal component analysis (PCA) was employed to demonstrate a potential relationship between certain enzymes and a group of cyanobacteria. The data were obtained from a data bank and this study. Methods and Results: Enzymes were partially purified using column chromatography. Anabaena strains contained Asp83/1I(5'-TTCGAA-3'), Asp83/1II (5'-GGCC-3'), Asp90I (5'-ACRYGT-3') and five isoschizomeric enzymes (5'-ATCGAT-3'). Aphanizomenon and Microcystis strains contained ApcTR183I (5'-TGCGCA-3') and Msp199I (5'-CCGG-3'), respectively. Planktothrix strains possessed Psc2I (5'-GAANNNNTTC-3'), Psc27I and Psc28I (5'-TTCGAA-3'). PCA showed that the most common cyanobacterial endonuclease types were AvaII, AvaI and AsuII. Conclusions: All planktic cyanobacteria studied contained restriction endonucleases. The defined restriction endonucleases were isoschizomers of known enzymes. The Nostoc and the Spirulina genera had an association, while the majority of the genera had no association with certain endonuclease type(s). Significance and Impact of the Study: The defined enzymes in this study and the estimated trend in the endonuclease type distribution allow more efficient avoidance of cynobacterial restriction barriers.