Protein Expression and Purification, Vol.28, No.2, 259-269, 2003
Human CYP1A1 allelic variants: baculovirus expression and purification, hydrodynamic, spectral, and catalytical properties and their potency in the formation of all-trans-retinoic acid
Three human cytochrome P450 1A1 (CYP1A1) allelic variants, namely wild-type (CYP1A1.1), CYP1A1.2 (I462V), and CY-P1A1.4 (T461N), we re expressed as C-terminal His-tagged fusions including a thrombin cleavage site in Spodoptera frugiperda insect cells by baculovirus infection. The variants were expressed with 30-90 nmol (1.8-5.4 mg) spectrally active cytochrome MO per one liter of culture and purified to electrophoretic homogeneity by Ni-agarose chromatography. The recombinant variants were structurally characterized by UV/Vis, ultracentrifugation, and EPR. Optical and EPR spectra showed all three variants predominantly in high spin state; moreover, EPR indicated changes in the electronic structure of the heme iron of the two mutant variants. Sedimentation equilibrium experiments demonstrated the purified variants in dimeric state in the presence of 0.2% emulgen+0.05% cholate. Higher detergent concentration, the presence of imidazole, and cleavage of the His-tag led to monomerization. Catalytic activity of all purified variants was reconstituted with purified human NADPH-P450 reductase and dilaurylphosphatidylcholine. Enzyme kinetics of ethoxyresorufin O-deethylation revealed similar K-m (approximate to 0.4 muM) for all variants but slightly different V-max values (CYP1A1.1: 4.2, CYP1A1.2: 7.0, and CYP1A1.4: 3.0 nmol/min/nmol CYP1A1). The extended C-terminus influenced the enzymatic activity only slightly. All three variants are able to produce significant amounts of all-trans-retinoic acid from all-trans-retinal with V-max of 4.0, 3.3, and 5.6 nmol/min/nmol CYP1A1 and K-m values of 111, 83, and 250 muM for CYP1A1.1, CYP1A1.2, and CYP1A1.4, respectively. Availability of the three purified human CYP1A1 variants should facilitate further characterization of their role in metabolism of endogenous and exogenous compounds as well as structural studies. (C) 2002 Elsevier Science (USA). All rights reserved.