화학공학소재연구정보센터
Protein Expression and Purification, Vol.35, No.1, 111-119, 2004
Purification and characterization of two recombinant human glucuronyltransferases involved in the biosynthesis of HNK-1 carbohydrate in Escherichia coli
Two glucuronyltransferases (GlcAT-P and GlcAT-S) are involved in the biosynthesis of HNK-1 carbohydrate, which is spatially and temporally regulated in the nervous system. To clarify the enzymatic properties of the respective glucuronyltransferases, we established an expression system for producing large amounts of soluble forms of flag-tagged human GlcAT-P and GlcAT-S in Escherichia coli. Approximately 15 and 6 mg of enzymatically active flag-GlcAT-P and flag-GlcAT-S were purified from E coli cells in 5 liters of culture medium, respectively. These recombinant enzymes transferred GlcA to a glycoprotein acceptor, asialo-orosomucoid (ASOR), as well as a glycolipid acceptor, paragloboside. The specific activity of the recombinant GlcAT-P (1100 nmol/min/mg) toward a glycoprotein acceptor, ASOR, was comparable to that of the enzyme (4300 nmol/min/mg) purified from rat brain. Phosphatidylinositol (PI) is specifically required for expression of the activity of the recombinant enzymes toward a glycolipid acceptor, paragloboside. The recombinant GlcAT-P was highly specific for the terminal type II structure, Galbeta1-4GlcNAc, while the recombinant GlcAT-S recognized not only the type II structure, Galbeta1-4GlcNAc, but also the type I structure, Galbeta1-3GlcNAc. These acceptor specificities were similar to those of the native enzymes. (C) 2004 Elsevier Inc. All rights reserved.