Polymer(Korea), Vol.17, No.2, 142-151, March, 1993
단섬유 강화 클로로슬폰화 폴리에틸렌 복합 재료의 인장 및 유전 특성
Tensile and Dielectric Properties of Short Fiber Reinforced Chlorosulfonated Polyethylene Composites
초록
Mill-mixing 방법으로 제조된 단섬유 강화(Aramid fiber, Carbon fiber) Chlorosulfonated Polyethylene(CSM) 복합 재료의 미가황 상태와 가황 상태에서의 인장 강도와 유전 정접(Tan δ), 비유전율(εr), 체적 저항을 연구하였다. 가황시킨 복합 재료는 미가황 상태에서의 단섬유 강화 복합재료보다 더 좋은 인장 강도와 유전 성질을 보임을 알 수 있었다. 복합 재료의 인장 강도는 미가황 상태와 가황 상태에 따라 다른 단섬유 종류의 영향을 보였으며 Aramid 단섬유가 더 큰 영향을 받는 것으로 나타났다. 단섬유의 종류에 관계없이 미가황 상태 복합 재료의 Tan δ와 εr는 단섬유 함량의 영향이 거의 없었으나 가황 상태 복합 재료의 Tan δ와 εr는 단섬유 함유량이 증가함에 따라 증가하였다. 복합 재료의 체적 저항은 단섬유의 종류와 함량에 관계없이 CSM 기질의 그것과 거의 같은 값(1013∼1015Ωcm)을 가졌다.
Tensile and dielectric properties of short aramid or carbon fiber reinforced chlorosulfonated polyethylene(CSM) composites were investigated. The composites were prepared by the mill-mixing method. The effects of vulcanization, fiber types and contents on the tensile strength, dielectric loss tangent(tan δ), specific inductive capacity(εr), and volume resistivity were discussed. The short fiber reinforced CSM composites showed better tensile and dielectric properties when CSM matrix was vulcanized. Tensile properties of the CSM composites with or without vulcanization were affected by the fiber types and the effect was larger in case of the aramid fiber reinforced composites. The tan δ and εr were affected by the fiber types and contents in the unvulcanized CSM composites, whereas those dielectric properties increased with fiber contents regardless of fiber types in the vulcanized CSM composites. It was observed that the volume resistivities of the CSM composites were almost same as that of the CSM matrix regardless of fiber types and contents.
- Cheon CS, "방전, 고전압 공학," 동명사, 서울, p. 485-492 (1986)
- Jeong KH, "플라스틱의 이론과 실제," 보진재, 서울, pp. 380-383 (1987)
- Knibbs RH, 26th Proc. Ann. Conf., SPI. Reinf. Plast/Composite, Piv. p. 1 (1971)
- Pillingetal MW, J. Mater. Sci., 14, 1326 (1979)
- VandenAssen D, Report NLR-TR-77113-U87 PP (1977)
- VandenAssen D, Chem. Abstr., 92, 111859 (1980)
- Penn L, Newey HA, Chiao TT, J. Mater. Sci., 11, 190 (1976)
- Penn L, Northolt MG, Eur. Polym. J., 10, 799 (1974)
- "Kevlar 49 Data Manual," Du Pont de Nemours Chemical Co., Delaware (1974)
- Mallick PK, "Fiber-Reinforces Composite," M. Dekker, New York, p. 31 (1988)
- Donnet JB, Bansal RC, "Carbon Fibers," Marcel Dekker, New York (1989)
- Jana B, Chaudhuri S, Pal AK, De SK, Polym. Eng. Sci., 32(6), 448 (1992)
- Agari Y, Ueda A, Nagai S, J. Appl. Polym. Sci., 43, 1117 (1991)
- Lee BL, Polym. Eng. Sci., 32(1), 36 (1992)
- Brydson JA, "Rubbery Materials and Their Compounds," Elsevier, London, p. 289 (1988)
- Morton M, "Rubber Technology," Van Nostrand Reinhold Co., New York, p. 360 (1987)
- Ohm RF, "The Vanderbilt Rubber Handbook," R.T. Vanderbilt, Norwalk (1990)
- Coran AY, Rubber Chem. Technol., 47, 396 (1974)
- Goettler La, Shen KS, Rubber Chem. Technol., 56, 620 (1963)
- Lim SH, Ha CS, Cho WJ, Polym.(Korea), 16(2), 216 (1992)
- Blythe AR, "Electric Properties of Polymers," Cambridge Univ., London, pp. 68-89 (1979)
- Park CH, Kwak YS, Jeung ES, Shin JM, J. KIEE, 1(2), 7 (1988)
- Hull D, "An Introduction to Composite Materials," Cambridge Univ., London, pp. 285-301 (1982)
- Roe YJ, "전자재료," Ohm Co., Seoul, pp. 207-210 (1978)
- Shin JH, "A Study on the Interface Treating Conditions and Dielectric Properties of Glass Fiber Reinforced Composites," Ph.D. Thesis, Pusan Nat'l Univ., Korea (1991)
- Park CH, Lee JH, Kwak YS, KIEE, 35(9), 388 (1986)
- Cho JS, "Materials Engineering," P.N.U. Press, Pusan, pp. 313-391 (1992)
- Cho JS, Kim ST, Park CH, KIEE, 41(6), 40 (1992)
- Seanor DA, "Electrical Properties of Polymer," Academic Press, New York, pp. 1-58 (1982)
- Blythe AR, "Electrical Properties of Polymers," Cambridge Univ. Press, London, pp. 90-139 (1979)