Polymer(Korea), Vol.17, No.2, 176-185, March, 1993
강인화된 Poly(Methyl Methacrylate)에서 입자의 Modulus가 강인화도에 미치는 영향
The Effect of Modulus of the Dispersed Particle On Fracture Toughness of Toughened Poly(Methyl Methacrylate)
초록
상분리된 Poly(methyl methacrylate) 알로이에서 분산상 입자의 modulus가 알로이의 강인화도 및 강인화 메카니즘에 미치는 영향을 살펴보았다. Matrix 물질로는 PMMA를, 분산상 입자로는 유화중합으로 합성한 200∼250nm 크기의 가교화된 poly(ethyl acrylate), poly(methyl acrylate) 및 poly(n-butyl methacrylate)를 사용하여 유화상태에서 블렌딩하여 PMMA계 고분자 알로이를 제조하였다. 온도를 -30℃에서 80℃까지 변화시키며 three-point bending test로 파괴인성, KIC를 측정한 결과, 분산상 입자가 고무상으로 되는 dhsehduddudr에서 KIC가 급격히 증가하는 전이영역이 나타나는 것을 실험한 세가지 알로이에서 발견되었다. 이 때 crack tip 주위에 stress whitening 현상을 동반한 plastic deformation이 관찰되며, 광학현미경 및 전자현미경 관찰 결과 고무상의 입자가 함유된 PMMA 알로이의 미세변형 메카니즘은 shear yielding에 의한 것으로 추정되었다. 또한 유리질의 딱딱한 분산상을 함유하는 brittle matrix/glassy domain 형태의 알로이의 경우 딱딱한 분산상의 함량이 증가함에 따라 계면접착력에 관계없이 파괴인성은 급격히 감소하였다.
The effect of modulus of the dispersed particle on the fracture toughness and toughening mechanism of the toughened PMMA was studied. Various kinds of crosslinking acrylic particles (ethyl, methyl acrylate and n-butyl methacrylate) of the order of 200 to 300nm were perpared and compared as toughening agents for PMMA. For the rigid dispersed particle/PMMA alloys, the fracture toughness decreased rapidly with the addition of rigid particles regardless of interfacial adhesion. However, the fracture toughness of the alloy increased gradually and leveled off as the modulus ratio between matrix and dispersed particle increases, which suggests that adequate modulus ratio is required to promote plastic deformation of the matrix near the particles, which results in increases in toughness. Optical and electron microscopy revealed that the deformation mechanism of PMMA alloy is shear yielding of the matrix PMMA.
- Bucknall CB, Toughened Plastics, Applied Science, London (1977)
- Riew CK, Gillham JK, Rubber Modified Thermoset Resin, Advances in Chemistry Series No. 208, American Chemical Society, Washington, D.C. (1984)
- Riew CK, Rubber Toughened Plastics, Advances in Chemistry Series No. 222, American Chemical Society, Washington, D.C. (1989)
- Kambour RP, Macromol. Rev., 7, 1 (1973)
- Bucknall CB, Adv. Polym. Sci., 27, 121 (1978)
- Yee AF, Pearson RA, J. Mater. Sci., 21, 2462 (1986)
- Bucknall CB, Partridge IK, Polymer, 24, 639 (1983)
- Bucknall CB, Gilbert AH, Polymer, 30, 213 (1989)
- Koo KK, Inoue T, Miyasaka K, Polym. Eng. Sci., 25, 741 (1985)
- Kinloch AJ, Willihams JG, J. Mater. Sci., 15, 987 (1980)
- Kim SC, Brown HR, J. Mater. Sci., 3, 307 (1984)
- Angolar JC, Fujita Y, Skai T, Inoue T, J. Polym. Sci. B: Polym. Phys., 26, 807 (1988)
- Merz EH, Claver GC, Baer E, J. Polym. Sci., 22, 325 (1956)
- Kunz S, Beaumont PWR, Ashby MF, J. Mater. Sci., 15, 1109 (1980)
- Newman S, Strella S, J. Appl. Polym. Sci., 9, 2297 (1965)
- Donald AM, Kramer EJ, J. Mater. Sci., 17, 1765 (1982)
- Bascom WD, Ting RY, Moulton RJ, Riew CK, Siebert AR, J. Mater. Sci., 16, 2657 (1981)
- Kambour RP, Russell DR, Polymer, 12, 237 (1971)
- Bucknall CB, Clayton D, Keast WE, J. Mater. Sci., 7, 1443 (1972)
- Donald AM, Kramer EJ, J. Mater. Sci., 17, 2351 (1982)
- Kurauchi T, Ohta T, J. Mater. Sci., 19, 1669 (1984)
- Yee AF, Sue HJ, J. Mater. Sci., 24, 1447 (1989)
- Ono H, Saeki H, Br. Polym. J., 7, 22 (1975)
- Hughes LJ, Britt GE, J. Appl. Polym. Sci., 15, 337 (1961)
- Owen AB, J. Mater. Sci., 14, 2521 (1979)
- Kinloch AJ, Young RJ, Fracture Behavior of Polymers, p. 437, Elsevier Applied Science, London (1983)
- Kenyon AS, Duffey HJ, Polym. Eng. Sci., 7, 189 (1967)
- Lange FF, Radford KC, J. Mater. Sci., 6, 1197 (1971)
- Balzano M, Ravi-Chander K, J. Mater. Sci., 26, 1387 (1990)
- Pavin M, Williams JG, J. Mater. Sci., 11, 2045 (1976)
- Bascom WD, Cottington RL, Jones RL, Peyser P, J. Appl. Polym. Sci., 19, 2545 (1975)
- Bascom WD, Cottington RL, Jones RL, Peyser P, J. Adhes., 7, 333 (1976)
- Wu S, Polym. Eng. Sci., 30, 753 (1990)
- Wu S, Polym. Int., 29, 229 (1992)
- Cho K, Lee MS, Yang JH, J. Mater. Sci., submitted