- Previous Article
- Next Article
- Table of Contents
International Journal of Molecular Sciences, Vol.4, No.8-9, 486-502, 2003
Structure, stability and interaction studies on nucleotide analogue systems
Most of the biological molecules have a good interaction with water molecules. The hydrogen bonding interactions with the structural analogues of nucleic acid phosphate group namely dimethyl phosphate anion (DMP) and diethyl phosphate anion (DEP) are studied employing the ab initio and density functional theory methods. Inspections have been made to locate the reactive sites for the interactions of isomeric forms of mono, di and tri hydrates of alkyl phosphate anion using the above theories. It reveals, water molecules have a very strong interaction with the phosphate group in both the molecules and their interactions induce the changes in the structural parameters of the PO4 group for both the DMP and DEP anions. The optimized structural parameters, total energy, dipole moment and rotational constants are calculated and are compared with the available experimental values. The chemical hardness and chemical potential for these complexes have been calculated at HF/6-31G* level of theory and discussed the conformational stability of these complexes.
Keywords:ab initio;density functional theory;interaction energy;dimethyl phosphate anion;diethyl phosphate anion