화학공학소재연구정보센터
International Journal of Molecular Sciences, Vol.8, No.2, 166-179, 2007
An in silico method for screening nicotine derivatives as cytochrome P450 2A6 selective inhibitors based on kernel partial least squares
Nicotine and a variety of other drugs and toxins are metabolized by cytochrome P450 (CYP) 2A6. The aim of the present study was to build a quantitative structure-activity relationship (QSAR) model to predict the activities of nicotine analogues on CYP2A6. Kernel partial least squares (K-PLS) regression was employed with the electro-topological descriptors to build the computational models. Both the internal and external predictabilities of the models were evaluated with test sets to ensure their validity and reliability. As a comparison to K-PLS, a standard PLS algorithm was also applied on the same training and test sets. Our results show that the K-PLS produced reasonable results that outperformed the PLS model on the datasets. The obtained K-PLS model will be helpful for the design of novel nicotine-like selective CYP2A6 inhibitors.