화학공학소재연구정보센터
Solid-State Electronics, Vol.44, No.1, 17-27, 2000
Switching in coplanar amorphous hydrogenated silicon devices
Switching has been observed in a wide variety of materials and devices. Hydrogenated amorphous silicon has become one of the most important cases because of interest in neural network applications. Although there are many reports regarding this phenomenon, not all of the physical processes involved are still determined precisely. Therefore, some more experimental information is needed in order to achieve this task. Much of the behavior of the devices has been ascribed to the existence of a filamentary region which is produced after the first switching process, called forming. We observed this filamentary region in its full extension by producing forming in amorphous silicon devices with coplanar metallic contacts placed near each other (similar to 5 mu m). The I-V characteristics, filament optical and atomic force microscopy images and chemical etching led us to correlate changes in resistance to metal inclusion into the amorphous film. There are two stages: the first is related to contact stabilization, the second to metal transport into the film bulk. Optical images show a permanent filamentary region after forming. AFM images of these filaments showed that they are formed essentially by material accumulation between the contacts. This material tends to get some atomic arrangement, becoming a polycrystalline solid. If the device was led to breakdown, such accumulation becomes either a hillock or a thin conducting channel connecting both contacts. In the case of a switching filament, the accumulation tends to be a chain of smaller hillocks along the conduction path. Metal from the contacts remains in the conduction path after forming and chemical etching indicated that it is placed near the path core. Before forming, a tunneling transport process can be ascribed to the non-ohmic behavior of the samples during the first stage of metallic inclusion.