International Journal of Energy Research, Vol.27, No.12, 1095-1116, 2003
Modelling CO poisoning and O-2 bleeding in a PEM fuel cell anode
Fuel gas containing carbon monoxide severely degrades the performance of a polymer electrolyte membrane (PEM) fuel cell. However, CO poisoning can be mitigated by introducing oxygen into the fuel (oxygen bleeding). A mathematical PEM fuel cell model is developed that simulates both CO poisoning and oxygen bleeding, and obtains excellent agreement with published, experimental data. Modelling efforts indicate that CO adsorption and desorption follow a Temkin model. Increasing operating pressure or temperature mitigates CO poisoning, while use of reformate fuel increases the severity of the poisoning effect. Although oxygen bleeding mitigates CO poisoning, an unrecoverable performance loss exists at high current densities due to competition for reaction sites between hydrogen adsorption and the heterogeneous catalysis of CO. Copyright (C) 2003 John Wiley Sons, Ltd.