- Previous Article
- Next Article
- Table of Contents
Polymer(Korea), Vol.17, No.4, 463-471, July, 1993
Poly[2-n-alky-1,4-phenylene bis(4,4'-dimethylsibenzoate)]의 합성 및 물성
Synthesis and Properties of Poly[2-n-alkyl-1,4-phenylene bis(4,4'-dimethylsibenzoate)]
초록
규연성 곁사슬이 도입된 실리콘 함유 방향족 폴리에스테르는 bis(4-chlorocarbonyl) dimetylsilan과 2-n-alkylhydroquinone의 용액, 용융 및 계면중축합 반응에 의해 합성하였다. 모든 중합체들은 THF, chloroform, DMF, p-chlorophenol 등과 간은 극성용매에 용해되었으며 용액점도는 곁사슬의 길이와 중합방법에 따라 0.23∼1.23dl/g으로 측정되었다. 이들 중합체들의 곁사슬의 용융에 기인한 성전이는 46∼99 ℃의 범위에서 관측할 수 있었는데 그 온도는 곁사슬의 길이가 증가하면서 감소하는 경향을 보였다. TGAA 곡선상에 나타난 초기 분해온도(Tid)는 질소가스 분위기하에서 307∼309 ℃이었으며, 800 ℃에서의 잔존 질량은 21.4∼35.2%로 겉사슬의 길이가 길어질수록 중합체내에서 방향족 성분의 양이 감소하여 낮은 값을 보였다. X-선 회절 실험 결과 알킨기가 치환된 중합체는 겉사슬의 격성화에 기인하여 약간의 결정성이 있음을 알 수 있었다.
Several silicon-containing aromatic polysters with flexible aide branches were synthesized by solution, melt and interfacial polycondensatlon of bis (4- chlorocarbonyphenyl)dimethylsilane with 2-n-alkylhydroquinones. All polymers were soluble In polar soluble in polar solvent like THF, chloroform, DMF, pchlorophrnol, etc, and their inherent viscosities ranged from 0.23 to 1.23 d1/g depfnding on the length of side branches, and polymerzation mothods. The phase transition duct to sidle chain melting of these polyesters were detectable at 46∼99℃, whose values decreased with increasing the length of side chains. The initial decomposition(7,4) in TGA curves appealed at 307∼309℃ in N2 gas and residual weights at 800℃ were 21.4%∼35.2%. Wide angle X-ray diffractograms showed that alkylsubstituted polyesters have some crystallinity resulting from crystallization of flexible side branches.
- Kipping FS, Proc. R. Soc. A, 159, 139 (1937)
- Thomas TH, Kendrick TC, J. Polym. Sci. A: Polym. Chem., 2, 537 (1969)
- Grassie N, McFarlame IG, Eur. Polym. J., 14, 875 (1978)
- Watt JAC, Chem. Br., 6, 519 (1970)
- Southwart DW, Hunt T, J. Inst. Rubber Ind., 2, 77 (1968)
- Southwart DW, Hunt T, J. Inst. Rubber Ind., 4, 75 (1979)
- Golduskii EA, Kuzminsk AS, Polym. Sci. Technol., 6, 75 (1979)
- Merker RL, Scott MJ, J. Polym. Sci. A: Polym. Chem., 2, 15 (1964)
- Breed LW, Elliot RL, Whitehead ME, J. Polym. Sci. A: Polym. Chem., 5, 2745 (1967)
- Grassie N, McFarlame IG, Francey KF, Eur. Polym. J., 15, 415 (1979)
- Breed LW, Elliot RL, Rosenberg H, U.S. Patent, 3,702,317 (1972)
- Breed LW, Wiely JC, U.S. Patent, 3,803,086 (1974)
- Kovacs HN, Delman AD, Simms BB, J. Polym. Sci. A: Polym. Chem., 6, 2103 (1968)
- Kovacs HN, Delman AD, Simms BB, J. Polym. Sci. A: Polym. Chem., 6, 2117 (1968)
- Pratt JR, Johnston NJ, Polym. Eng. Sci., 16, 309 (1976)
- Ghatge ND, Jadhav JY, J. Polym. Sci. A: Polym. Chem., 21, 3055 (1983)
- Ghatge ND, Jadhav JY, Chaven NN, Eur. Polym. J., 20, 1009 (1984)
- Ghatge ND, Jadhav JY, Misra BM, J. Polym. Sci., 24, 103 (1986)
- Jadhav JY, Makromol. Chem. Rapid Commun., 6, 457 (1985)
- Lee SM, Kim KS, Lee KS, Lee SK, Polym.(Korea), 13(10), 888 (1989)
- Kipping R, J. Chem. Soc., 95, 302 (1909)
- Speck SB, J. Org. Chem., 18, 1689 (1953)
- Ghatge ND, Jadhav JY, Syn. React. Inorg. Org. Chem., 14, 83 (1984)
- Majnusz J, Lenz RW, Eur. Polym. J., 21, 565 (1985)
- Ballauff M, Angew. Chem.-Int. Edit., 28, 253 (1989)
- Lee KS, Lee BW, Jung JC, Lee SM, Polym.(Korea), 13(1), 47 (1989)
- Lee KS, Won JC, Jung JC, Makromol. Chem., 190, 1547 (1989)
- Lee KS, Kim HM, Rhee JM, Lee SM, Makromol. Chem., 192, 1033 (1991)
- Lee KS, Rhee JM, Choi KY, Kim HM, Lee SM, Frontiers of Polymer Research, Plenum Press, NY, pp. 529-540 (1992)