화학공학소재연구정보센터
Fuel Processing Technology, Vol.86, No.10, 1059-1070, 2005
Dependence of biodiesel fuel properties on the structure of fatty acid alkyl esters
Biodiesel, defined as the mono-alkyl esters of vegetable oils or animal fats, is an "alternative" diesel fuel that is becoming accepted in a steadily growing number of countries around the world. Since the source of biodiesel varies with the location and other sources such as recycled oils are continuously gaining interest, it is important to possess data on how the various fatty acid profiles of the different sources can influence biodiesel fuel properties. The properties of the various individual fatty esters that comprise biodiesel determine the overall fuel properties of the biodiesel fuel. In turn, the properties of the various fatty esters are determined by the structural features of the fatty acid and the alcohol moieties that comprise a fatty ester. Structural features that influence the physical and fuel properties of a fatty ester molecule are chain length, degree of unsaturation, and branching of the chain. Important fuel properties of biodiesel that are influenced by the fatty acid profile and, in turn, by the structural features of the various fatty esters are cetane number and ultimately exhaust emissions, heat of combustion, cold flow, oxidative stability, viscosity, and lubricity. Published by Elsevier B.V.