화학공학소재연구정보센터
Polymer(Korea), Vol.31, No.6, 461-468, November, 2007
레이저 광산란법에 의한 폴리에스터/실세스키옥세인 나노복합재료 응집체의 구조분석
Structural Analysis of Microphase-separated Aggregates of Polyester/Polyhedral Oligomeric Silsesquioxane Nanocomposite by Laser Light Scattering
E-mail:
초록
폴리에스터와 trisilanolisobutyl polyhedral oligomeric silsesquioxane(TBPOSS)으로 제조된 나노복합재료에 존재하는 응집체의 구조를 이해하기 위하여 SEM-EDS 분석과 1,1,1,3,3,3-hexafluoro-2-propanol(HFIP) 용매에 녹인 뒤 레이저 광산란법이 실시되었다. SEM에서 평균 직경 120 nm로 나타난 구형 응집체는 가교화된 마이크로겔이 아니라, 320개의 TBPOSS 분자들과 폴리에스터 분절들이 교대로 연결된 선형 중합체 사슬(무게평균 분자량=2.3×106 g/mol)이며, 이들은 매트릭스의 폴리에스터와의 화학조성 차이 때문에 상분리된 것으로 여겨진다. 반면에 무게평균 분자량이 4.0×104 g/mol인 매트릭스의 폴리에스터는 분자당 2.5개의 TBPOSS 분자를 포함하고 있는 것으로 나타났다. 또한 넣어준 TBPOSS의 약 93%가 매트릭스에 존재하며 나머지 7%는 구형 응집체에 분포하고 있다는 것도 밝혀졌다.
In order to understand the structure of the existing aggregate in the nanocomposite, which has been prepared with polyester and trisilanolisobutyl polyhedral oligomeric silsesquioxane(TBPOSS), laser light scattering(LLS) and SEM-EDS were applied to its 1,1,1,3,3,3-hexafluoro-2-propanol solution and original sample, respectively. Although aggregate particles appeared as spherical shape of the average diameter of 120 nm in SEM image, they were not microgels but almost linear copolymer chains (Mw=2.3×106 g/mol) alternating 320 molecules of TBPOSS with polyester subchains. It has been microphase-separated from the matrix polyester due to the difference of chemical composition. As the matrix, polyester chain of Mw=4.0×104 g/mol had averagely 2.5 molecules of TBPOSS per chain. It is also found that about 93% of total TBPOSS molecules existed in matrix phase and the residual 7% in spherically aggregated phase.
  1. Baney RH, Itoh M, Sakakibara A, Suzuki T, Chem. Rev., 95(5), 1409 (1995)
  2. Li GZ, Wang LC, Toghiani H, Daulton TL, Koyama K, Pittman CU, Macromolecules, 34(25), 8686 (2001)
  3. Abad MJ, Barral L, Fasce DP, Williams RJJ, Macromolecules, 36(9), 3128 (2003)
  4. Choi J, Kim SG, Laine RM, Macromolecules, 37(1), 99 (2004)
  5. Liu HZ, Zheng SX, Nie KM, Macromolecules, 38(12), 5088 (2005)
  6. Ni Y, Zheng SX, Nie KM, Polymer, 45(16), 5557 (2004)
  7. Liu YH, Zheng SX, Nie KM, Polymer, 46(25), 12016 (2005)
  8. Li GZ, Cho H, Wang LC, Toghiani H, Pittman CU, J. Polym. Sci. A: Polym. Chem., 43(2), 355 (2005)
  9. Huang QR, Volksen W, Huang E, Toney M, Frank CW, Miller RD, Chem. Mater., 14, 3676 (2002)
  10. Kopesky ET, McKinley GH, Cohen RE, Polymer, 47(1), 299 (2006)
  11. Zheng L, Farris RJ, Coughlin EB, Macromolecules, 34(23), 8034 (2001)
  12. Waddon AJ, Zheng L, Farris RJ, Coughlin EB, Nano Lett., 2, 1149 (2002)
  13. Bizet S, Galy J, Gerard JF, Polymer, 47(24), 8219 (2006)
  14. Li GZ, Wang L, Toghiani H, Daulton TL, Pittman CU, Polymer, 43(15), 4167 (2002)
  15. Lee A, Xiao J, Feher FJ, Macromolecules, 38(2), 438 (2005)
  16. Lee YJ, Kuo SW, Huang WJ, Lee HY, Chang FC, J. Polym. Sci. B: Polym. Phys., 42(6), 1127 (2004)
  17. Zhang YD, Lee SH, Yoonessi M, Liang KW, Pittman CU, Polymer, 47(9), 2984 (2006)
  18. Lee YJ, Kuo SW, Huang CF, Chang FC, Polymer, 47(12), 4378 (2006)
  19. Yoon KH, Polk MB, Park JH, Min BG, Schiraldi DA, Polym. Int., 54, 47 (2005)
  20. Kim JK, Master Thesis, Kumoh National Institute of Technology (2006)
  21. Huglin MG, Light Scattering from Polymer Solutions, Academic, New York (1972)
  22. Brown W, Dynamic Light Scattering: The Method and Some Applications, Clarendon, Oxford (1993)
  23. Roe RJ, Methods of X-ray and Neutron Scattering in Polymer Science, Oxford University, New York (2000)
  24. Higgins JS, Benoit H, Polymers and Neutron Scattering, Clarendon Press, Oxford (1994)
  25. Naoki M, Wunder SL, Chu B, Park IH, J. Polym. Sci. B: Polym. Phys., 23, 2567 (1985)