Journal of the Korean Industrial and Engineering Chemistry, Vol.18, No.6, 580-586, December, 2007
프리폼 구조에 따른 4방향성 탄소/탄소 복합재의 열물리적 특성
Thermophysical Properties of 4D Carbon/Carbon Composites with Preform Architectures
E-mail:
초록
본 연구에서는, 프리폼 구조가 다른 4방향성 탄소/탄소 복합재를 제조하고, 그들의 열물리적 특성을 연구하였다. 탄소섬유 프리폼은 네 가지의 다른 간격의 섬유다발로 직조하였다. 직조한 프리폼들은 가압함침 및 탄화 공정을 통해 고밀도화하였다. 고밀도화된 복합재는 2300 ℃에서 흑연화하였다. 이 복합재의 미세구조는 주사전자현미경을 통해 관찰하였다. 프리폼의 구조가 탄소/탄소 복합재의 열물리적 특성에 미치는 영향을 알아보기 위해 연구하였다. 그리고, 열전달 및 열팽창 거동은 섬유의 보강방향과 프리폼의 단위 격자에 따른 여러 인자들로 연구.검토하였다.
In this study, 4 directional carbon/carbon composites with different preform architectures were manufactured and their thermophysical properties are studied. Carbon fiber preforms are fabricated with fiber bundles using four different spaces. The density of the fabricated preforms were increased through pressure impregnation and carbonizing process. The increased density of the composites was graphitized at 2300 ℃. Microstructures of these composite were observed under scanning electron microscope. This was to understand the effect the preform architectures has on the thermophysical properties of carbon/carbon composites. Also, the behavior of thermal conduction and heat expansion was investigated and studied in association with the factors of the reinforced direction of fibers and unit cell of preforms.
Keywords:carbon/carbon composites;microstructure;specific heat;thermal conductivity;thermal expansion
- Fitzer E, Manocha LM, Mechanical properties of carbon/carbon composites. In: Carbon fiber reinforcement and carbon/carbon composites, 190, Springer, Berlin (1998)
- Schulte-Fischdick J, Zern A, Mayer J, Ruhle M, Frieβ M, Krenkel W, Kochendorfer R, Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process., 332, 146 (2002)
- Siron O, Chollon G, Tsuda H, Yamauchi H, Maeda K, Kosaka K, Carbon, 38, 1369 (2000)
- Ruo R, Liu T, Li J, Zhang H, Chen Z, Tian G, Carbon, 42, 2887 (2004)
- Tawil H, Bentsen LD, Baskaran S, Hasselman DPH, J. Mater. Sci., 20, 3201 (1985)
- Oku T, Kurumada A, Sogabe T, Oku T, Hiraoka T, Kuroda K, J. Nucl. Mater., 257, 59 (1998)
- Manocha LM, Warrier A, Manocha S, Sathiyamoorthy D, Banerjee S, Carbon, 44, 480 (2006)
- Baxter RI, Rawlings RD, Iwashita N, Sawada Y, Carbon, 38, 441 (2000)
- Lee YJ, Joo HJ, Compos. Pt. A-Appl. Sci. Manuf., 35, 1285 (2004)
- Joo HJ, Ryu SH, Ha HS, Carbon Science, 1, 159 (2001)
- Sheem KY, Oh IS, Choi DM, Joo HJ, Yoon BI, J. Korean Soc. Compos. Mater., 8, 9 (1995)
- Lafdi K, Chin A, Bourgerette C, Proceedings of the 22nd Biennial Conference on American Carbon Society, San Diego, CA, 92 (1995)
- Whittaker AJ, Taylor R, Tawil H, Proc. R. Soc. of London A-Math. Phys. Eng. Sci., 430, 167 (1990)
- Zhang JD, Modern Composites, 78, Matter Press of China, Beijing (1997)
- Steward EG, Look BP, Kellett EA, Nature, 187, 1015 (1960)
- Tsang DKL, Marsden BJ, Fok SL, Hall G, Carbon, 43, 2902 (2005)