화학공학소재연구정보센터
Journal of the Korean Industrial and Engineering Chemistry, Vol.18, No.6, 618-624, December, 2007
2단계 열화학 메탄 개질을 위한 Cu/Fe/Zr-혼합 산화물 매체 내 Cu 첨가 효과
Effect of Cu Addition in Cu/Fe/Zr-Mixed Metal Oxide Mediums for Two-step Thermochemical Methane Reforming
E-mail:
초록
Cu/Fe/Zr 혼합 산화물 매체 상에서의 2단계 열화학 메탄 개질 반응을 고정층 적외선 반응로를 이용하여 수행했다. 첫 번째 단계에서 금속 산화물은 CO, H2 및 환원된 금속 산화물을 생성하기 위하여 1173 K의 온도에서 메탄으로 환원되었다. 두번째 단계에서 환원된 금속 산화물은 H2와 금속 산화물을 생성하기 위하여 973 K의 온도에서 재산화되었다. 본 연구에서는 Cu/Fe/Zr 혼합 산화물 내 Cu 첨가량에 따른 반응 특성과 사이클 반응을 평가하였다. Cu/Fe/Zr 혼합 산화물 매체 내 Cu 첨가량 증가에 따라 첫 번째 단계에서 CH4 전환율, CO2로의 선택성 및 H2/CO 몰 비는 증가하였으며, CO로의 선택성은 감소하는 경향을 나타냈다. 한편, 두 번째 단계에서 H2 생성량은 Cu 첨가량 증가에 따라 감소하는 것으로 나타났다. Cu의 첨가량이 x = 0.7인 CuxFe3-xO4/ZrO2 매체는 내구성이 우수한 매체임을 지시하듯이 10회의 사이클 순환 반응에서 우수한 재생 성능을 나타냈다. 더 나아가 물 분해 단계에서 침적된 탄소의 가스화 반응은 매체 내 Cu 첨가에 의해 촉진되었다.
A thermochemical methane reforming consisting of two steps on Cu/Fe/Zr mixed oxide media was carried out using a fixed bed infrared reactor. In the first step, the metal oxide was reduced with methane to produce CO, H2 and the reduced metal oxide in the temperature of 1173 K. In the second step, the reduced metal oxide was re-oxidized with steam to produce H2 and the metal oxide in the temperature of 973 K. The reaction characteristics on the added amounts of Cu in Cu/Fe/Zr mixed oxide media and the cyclic tests were evaluated. With the increase of the added amount of Cu in Cu/Fe/Zr mixed oxide media, the conversion of CH4, the selectivity of CO2 and the H2/CO molar ratio were increased, while the selectivity of CO was decreased in the first step. On the other hand, the evolved amount of H2 was decreased with increasing the added amount of Cu in the second step. The CuxFe3-xO4/ZrO2 medium added with Cu of x = 0.7 showed good regeneration properties in the 10th cyclic tests indicating that the medium had high durability. In addition, the gasification of the deposited carbon in the water splitting step was promoted with the addition of Cu in the media.
  1. Kodama T, Ohtake H, Matsumoto S, Aoki A, Shimizu T, Kitayama Y, Energy, 25(5), 411 (2000)
  2. Shimizu T, Shimizu K, Kitayama Y, Kodama T, Sol. Energy, 71, 315 (2001)
  3. Kodama T, Shimizu T, Satoh T, Shimizu KI, Energy, 28(11), 1055 (2003)
  4. Kodama T, Shimizu T, Satoh T, Nakata M, Shimizu KI, Sol. Energy, 73, 363 (2002)
  5. Hwang GJ, Park CS, Lee SH, Seo IT, Kim JW, J. Ind. Eng. Chem., 10(6), 889 (2004)
  6. Kodama T, Progress in Energy and Combustion Science, 29, 567 (2003)
  7. Kodama T, Kondoh Y, Yamamoto Y, Andou R, Satou N, Sol. Energy, 78, 623 (2005)
  8. Cha KS, Lee DH, Jo WJ, Lee YS, Kim YH, Trans. of the Korean Hydrogen and New Energy Society, 18, 140 (2007)
  9. Ryu JC, Lee DH, Kim YH, Yang HS, Park CS, Hwang GJ, Kim JW, Trans. of the Korean Hydrogen and New Energy Society, 17, 21 (2006)
  10. Cavani F, Trifiro F, Vaccari A, Catal. Today, 11, 173 (1991)
  11. Rodriguez NM, Kim MS, Baker RTK, J. Catal., 140, 16 (1993)
  12. Li YD, Chen JL, Chang L, Qin YN, J. Catal., 178(1), 76 (1998)
  13. Chen JL, Li YD, Li ZQ, Zhang XX, Appl. Catal. A: Gen., 269(1-2), 179 (2004)
  14. Liu W, Flytzanistephanopoulos M, J. Catal., 153(2), 304 (1995)
  15. Artizzu P, Garbowski E, Primet M, Brulle Y, Saint-Just J, Catal. Today, 47(1-4), 83 (1999)