Korean Chemical Engineering Research, Vol.45, No.6, 604-610, December, 2007
납사타르피치의 연소 및 수증기 가스화 반응특성
Characteristics of Steam Gasification and Combustion of Naphtha Tar Pitch
E-mail:
초록
납사타르피치의 연소 및 수증기 가스화의 반응특성을 알아보기 위하여 납사타르피치를 탄소원으로 사용하여 열중량분석을 수행하였다. 반응의 활성화에너지, 반응차수, 빈도인자 등을 구하기 위하여 Friedman 방법과 Ozawa-Flynn-Wall 방법이 사용되었다. Friedman 방법을 사용하여 반응전환에 따른 연소의 활성화에너지를 구하였는데, 0.2~0.6 정도의 전환이 일어났을 때는 활성화에너지가 41.6~68.1 kJ/g-mol이었다. 0.9~1.0 정도의 전환이 일어났을 때는 183.1~191.2kJ/g-mol이었다. 그리고 수증기 가스화에 대해서는, 0.2~0.6 반응전환에서 활성화에너지는 31.9~44.9 kJ/g-mol이었다. 0.8~0.95 전환에서는 70.6~87.8 kJ/g-mol이었다. 이러한 결과로 미루어보아 반응은 탈휘발화와 연소 또는 가스화 반응의 두 단계로 진행되는 것을 알 수 있었다.
Characteristics of steam gasification and combustion of naphtha tar pitch, which is the bottom product of naphtha cracking process, were investigated by using the thermo gravimetric analyzer to develop the technology for obtaining syngas by using the naphtha tar pitch as a carbon source. Friedman’s and Ozawa-Flynn-Wall method were used to calculate activation energy, reaction order and frequency factor of reaction rate constant for both of steam gasification and combustion. The activation energy of combustion of naphtha tar pitch based on the fractional conversion by Friedman’s method was in the range of 41.58 ~ 68.14 kJ/g-mol when the fractional conversion level was in the range of 0.2~0.6, but 183.07~191.17 kJ/g-mol when the conversion level was 0.9~1.0, respectively. In case of steam gasification of naphtha tar pitch, the activation energy was in the range of 31.87~44.87 kJ/g-mol in the relatively lower conversion level (0.2~0.6), but 70.63~87.79 kJ/g-mol in the relatively higher conversion level (0.8~0.95), respectively. Those results exhibited that the steam gasification as well as combustion would occur by means of two steps such as devolitilization followed by combustion or gasification.
- Jaber JO, Probert SD, Int. J. Therm. Sci., 39(2), 295 (2000)
- Lee SY, Kim YJ, Kim SD, HWAHAK KONGHAK, 39(1), 72 (2001)
- Lee WJ, Kim SD, Song BH, Korean J. Chem. Eng., 19(6), 1091 (2002)
- Altun NE, Hicyilmaz C, Hwang JY, Bagci AS, Fuel Process. Technol., 87(9), 783 (2006)
- Pan YG, Velo E, Roca X, Many JJ, Puigjaner L, Fuel, 79(11), 1317 (2000)
- Ponzio A, Kalisz S, Blasiak W, Fuel Process. Technol., 87(3), 223 (2006)
- Wall TF, Liu G, Wu H, Roberts DG, Benfell KE, Gupta S, Lucas JA, Harris DJ, Prog. Energy Combust. Sci., 28(5), 405 (2002)
- Lee WJ, Kim SD, Song BH, Korean J. Chem. Eng., 18(5), 640 (2001)
- Hanson S, Patrick JW, Walker A, Fuel, 81(5), 531 (2002)
- Hill M, Fott P, Fuel, 72(4), 525 (1993)
- Bayarsaikhan B, Sonoyama N, Hosokai S, Shimada T, Hyashi J, Li C, Chiba T, Fuel, 85(3), 340 (2006)
- Belghit A, El Issami S, Energy Conv. Manag., 42(1), 81 (2001)
- In SJ, Ryu SK, Rhee BS, HWAHAK KONGHAK, 27(3), 291 (1989)
- Friedman HL, J. Poly. Sci.: part C, 6(1), 183 (1964)
- Kim SJ, Lee CG, Song PS, Yun JS, Kang Y, Kim JS, Choi MJ, J. Korean Ind. Eng. Chem., 14(5), 634 (2003)
- Doyle CD, J. Appl. Polym. Sci., 6(24), 639 (1962)
- Flynn JH, Wall LA, J. Res. Natl. Bur. Stand., 70A(6), 487 (1966)
- Hamciuc C, Vlad-Bubulac T, Petreus O, Lisa G, Eur. Polym. J., 43(3), 980 (2007)
- Ozawa T, Bull. Chem. Soc. Jpn., 38(11), 1881 (1965)
- Pielichowski K, Solid State Ion., 104(1-2), 123 (1997)
- Sekine Y, Ishikawa K, Kikuchi E, Matsukata M, Akimoto A, Fuel, 85(2), 122 (2006)