화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.13, No.7, 1054-1061, December, 2007
Determination of the Process Parameters Relative Influence on kLa Value using Taguchi Design Methodology
E-mail:
This article describes experimental determination of the relative impact of significant process parameters that influence volumetric oxygen mass transfer coefficient (kLa) using Taguchi design methodology. For this purpose an automated RC1 reaction calorimeter (Mettler-Toledo), which was originally developed for chemical processes, was modified for the bioprocesses. Simple fermentation using Baker's yeast was studied to illustrate the design procedure. Orthogonal array L25 was selected for the proposed design and ANOVA method was used for recognizing the relative influence of the process parameters. Within the observed range of temperature (θ), fermentation media volume (VFM), and yeast mass concentration (γY), these process parameters were found to be unimportant compared to the volumetric air flow rate (qV,a) and rotational frequency of the stirrer (fm). The qV,a had a substantial effect on the kLa value (89.2 %) and the fm had just a small one (3.6 %), meanwhile the remain fraction to 100 % represents error. The results refer strictly to the selected case study. Anyhow, the proposed procedure shows that application of the Taguchi approach for analyzing the oxygen mass transfer based on the experimental data obtained from a highly-automated laboratory reactor appears to have potential usage in general biopharmaceutical process design.
  1. Gavrilescu M, Chisti Y, Biotechnol. Adv., 23, 47 (2005)
  2. Rajapakse A, Titchener-Hooker NJ, Farid SS, Comput. Chem. Eng., 29(6), 1357 (2005)
  3. Walsh G, Trends Biotechnol., 23, 553 (2005)
  4. Narhi M, Nordstrom K, Eur. J. Pharm. Biopharm., 59, 397 (2005)
  5. Hiraoka S, Kato Y, Tada Y, Kai S, Inoue N, Ukai Y, J. Chem. Eng. Jpn., 34(5), 600 (2001)
  6. Williams JA, Chem. Eng. Prog., 98, 31 (2002)
  7. Garcia-Ochoa F, Gomez E, Chem. Eng. Sci., 59(12), 2489 (2004)
  8. Van’t Riet K, Tramper J, Basic bioreactor design, p. 236, Marcel Dekker, New York (1991)
  9. Tobajas M, Garcia-Calvo E, Heat Mass Transf., 36, 201 (2000)
  10. Gavrilescu M, Roman RV, Efimov V, Acta Biotechnol., 13, 59 (1993)
  11. Lemoine R, Morsi BI, Int. J. Chem. R. Eng., 3, 35 (2005)
  12. Thiry M, Cingolani D, Trends Biotechnol., 20, 103 (2002)
  13. Ranjit KR, A primer on the Taguchi method, Van Nostrand Reinhold, New York (1990)
  14. Nataraj M, Arunachalam VP, Dhandapani N, Indian. J. Eng. Mater S., 12, 505 (2005)
  15. Moghaddam J, Sarraf-Mamoory R, Yamini Y, Abdollahy M, Ind. Eng. Chem. Res., 44(24), 8952 (2005)
  16. Prasad KK, Mohan SV, Rao RS, Pati BR, Sarma PN, Biochem. Eng. J., 24, 17 (2005)
  17. Marison I, Linder M, Schenker B, Thermochim. Acta, 310(1-2), 43 (1998)
  18. Marison I, Liu JS, Ampuero S, Von Stockar U, Schenker B, Thermochim. Acta, 309(1-2), 157 (1998)
  19. Janssen M, Patino R, von Stockar U, Thermochim. Acta, 435(1), 18 (2005)
  20. Aulenta F, Bassani C, Ligthart J, Majone M, Tilche A, Water Res., 36, 1297 (2002)
  21. Vellanki P, Jayaraman G, Marison IW, Liu JS, Jayaraman K, Thermochim. Acta, 309(1-2), 105 (1998)
  22. Hvalec M, Gorsek A, Glavic P, Acta. Chim. Slov., 51, 245 (2004)
  23. Mignone CF, Ertola RJ, J. Chem. Technol. Biotechnol. B, 34, 121 (1984)
  24. Badino AC, Almeida PIF, Cruz AJG, Chem. Eng. Educ., 38, 100 (2004)
  25. Puthli MS, Rathod VK, Pandit AB, Biochem. Eng. J., 23, 25 (2005)
  26. Bandaiphet C, Prasertsan P, Carbohydr. Polym., 66, 216 (2006)
  27. Kaskiala T, Miner. Eng., 15, 853 (2002)