화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.13, No.7, 1083-1090, December, 2007
Carbon Dioxide Absorption into NaOH Solution in a Cross-flow Rotating Packed Bed
E-mail:
A cross-flow rotating packed bed (RPB) was applied to absorb carbon dioxide (CO2) by NaOH solution from gaseous streams. The cross-flow RPB has an inner radius of 2.4 cm, an outer radius of 4.4 cm and an axial height of 12.0 cm. Wire mesh was used as packings. Rotor speeds ranged from 540 to 1600 rpm, providing 11∼97 equivalent gravitational force. The removal efficiency of CO2 was determined at various values of operating parameters, including the rotor speed, gas flow rate, liquid flow rate, and NaOH concentration. Our experimental results demonstrated that the removal efficiency of CO2 increased with the rotor speed, liquid flow rate and NaOH concentration; however, decreased with the gas flow rate. Furthermore, a cross-flow RPB provides a reduction in the dosage of the NaOH solution for CO2 absorption, suggesting that a cross-flow RPB has a great potential in the removal of CO2 from the exhausted gases.
  1. Ramshaw C, Mallinson RH, U. S. Patent 4,283,255 (1981)
  2. Ramshaw C, Chem. Eng., 389, 13 (1983)
  3. Keyvani M, Gardner NC, Chem. Eng. Prog., 85, 48 (1989)
  4. Munjal S, Dudukovic MP, Ramachandran PA, Chem. Eng. Sci., 44, 2245 (1989)
  5. Fowler F, Gendes KF, Nyguard HF, Commercial Scale Demonstration of Higee for Bilk CO2 Removal and Gas Dehydration. 21st Annual Offshore Technology Conference, Houston, TX, May (1989)
  6. Kumar MP, Rao DP, Ind. Eng. Chem. Res., 29, 917 (1990)
  7. Singh SP, Wilson JH, Counce RM, Villiers-Fisher JF, Jennings HL, Lucero AJ, Reed GD, Ashworth RA, Elliott MG, Ind. Eng. Chem. Res., 31, 574 (1992)
  8. Liu HS, Lin CC, Wu SC, Hsu HW, Ind. Eng. Chem. Res., 35(10), 3590 (1996)
  9. Kelleher T, Fair JR, Ind. Eng. Chem. Res., 35(12), 4646 (1996)
  10. Peel J, Howarth CR, Ramshaw C, Trans IChemE. PartA., 76, 585 (1998)
  11. Chen JF, Wang YH, Guo F, Wang XM, Zheng C, Ind. Eng. Chem. Res., 39(4), 948 (2000)
  12. Lin CC, Liu HS, Ind. Eng. Chem. Res., 39(1), 161 (2000)
  13. Sandilya P, Rao DP, Sharma A, Biswas G, Ind. Eng. Chem. Res., 40(1), 384 (2001)
  14. Chen YS, Liu HS, Ind. Eng. Chem. Res., 41(6), 1583 (2002)
  15. Lin CC, Ho TJ, Liu WT, J. Chem. Eng. Jpn., 35(12), 1298 (2002)
  16. Lin CC, Liu WT, J. Chem. Technol. Biotechnol., 78(2-3), 138 (2003)
  17. Lin CC, Liu WT, Tan CS, Ind. Eng. Chem. Res., 42(11), 2381 (2003)
  18. Chen YS, Liu HS, Lin CC, Liu WT, J. Chem. Eng. Jpn., 37(9), 1122 (2004)
  19. Lin CC, Wei TY, Liu WT, Shen KP, J. Chem. Eng. Jpn., 37(12), 1471 (2004)
  20. Lin CC, Chen YS, Liu HS, J. Chin. Inst. Chem. Eng., 35, 531 (2004)
  21. Chen YH, Chang CY, Su WL, Chen CC, Chiu CY, Yu YH, Chiang PC, Chiang SIM, Ind. Eng. Chem. Res., 43(1), 228 (2004)
  22. Chen YH, Chang CY, Su WL, Chiu CY, Yu YH, Chiang PC, Chang CF, Shie JL, Chiou CS, Chiang SI, J. Chem. Technol. Biotechnol., 80(1), 68 (2005)
  23. Chen YH, Chiu CY, Chang CY, Huang YH, Yu YH, Chiang PC, Shie JL, Chiou CS, Ind. Eng. Chem. Res., 44(1), 21 (2005)
  24. Chen YS, Lin CC, Liu HS, Ind. Eng. Chem. Res., 44(4), 1043 (2005)
  25. Chen YS, Lin CC, Liu HS, Ind. Eng. Chem. Res., 44(20), 7868 (2005)
  26. Lin CC, Liu WT, J. Ind. Eng. Chem., 12(3), 455 (2006)
  27. Chen YS, Lin FY, Lin CC, Tai CYD, Liu HS, Ind. Eng. Chem. Res., 45(20), 6846 (2006)
  28. Tan CS, Chen JE, Sep. Purif. Technol., 49(2), 174 (2006)
  29. Cheng HH, Tan CS, J. Power Sources, 162(2), 1431 (2006)
  30. Lin CC, Liu WT, J. Ind. Eng. Chem., 13(1), 71 (2007)
  31. Lin CC, Jian GS, Sep. Purif. Technol., 54(1), 51 (2007)
  32. Guo F, Zheng C, Guo K, Feng YD, Gardner NC, Chem. Eng. Sci., 52(21-22), 3853 (1997)
  33. Lin CC, Wei TY, Hsu SK, Liu WT, Sep. Purif. Technol., 52(2), 274 (2006)