Advances in Polymer Technology, Vol.26, No.1, 14-20, 2007
Preparation and characterization of PDLC films formed using a two-step procedure
A novel polymer-dispersed liquid crystal composite film was prepared using liquid crystal and dual resins, namely, UV-curable urethane diacrylate and thermo-curable epoxy, with a fixed LC content of 50 wt%. A combination treatment of UV irradiation and heat was performed in sequential steps. At first, the urethane diacrylate resin was cross-linked through UV irradiation and a pre-UV-cured film was formed. Then, the pre-UV-cured film was heat treated for curing the thermo-curable epoxy resin. As the thermal polymerization continued, LC droplets were formed and became embedded within the polymer matrix. PDLC films obtained from the polymer matrix with refractive indices in a range from 1.511 to 1.523 (1.517 +/- 0.006) have optimal electro-optical properties. Films with a refractive index higher than 1.523 have high contrast ratio (CR), threshold voltage (V-th), and V-90, whereas those with a low refractive index of 1.508 have low CR, Vth, and V90. In this study, we found that PDLC composite films with optimal compositions prepared by dual resins (UV/thermal) have good electro-optical properties. (c) 2007 Wiley Periodicals, Inc.