화학공학소재연구정보센터
Applied Microbiology and Biotechnology, Vol.75, No.5, 1191-1200, 2007
Bioaugmentation and coexistence of two functionally similar bacterial strains in aerobic granules
The survival of the inoculated microbial culture is critical for successful bioaugmentation but impossible to predict precisely. As an alternative strategy, bioaugmentation of a group of microorganisms may improve reliability of bioaugmentation. This study evaluated simultaneous bioaugmentation of two functionally similar bacterial strains in aerobic granules. The two strains, Pandoraea sp. PG-01 and Rhodococcus erythropolis PG-03, showed high phenol degradation and growth rates in phenol medium, but they were characterized as having a poor aggregation activity and weak bioflocculant-producing and biofilm-forming abilities. In the spatially homogeneous batch conditions, strain PG-01 with higher growth rates outcompeted strain PG-03. However, the two strains could stably coexist in the spatially heterogeneous conditions. Then the two strains were mixed and bioaugmented into activated sludge in two sequencing batch reactors, which were operated with the different settling times of 5 and 30 min, respectively. Aerobic granules were developed only in the reactor with a settling time of 5 min. Fluorescence in situ hybridization and denaturing gradient gel electrophoresis showed that the two strains could coexist in aerobic granules but not in activated sludge. These findings suggested that the compact structure of aerobic granules provided spatial isolation for coexistence of competitively superior and inferior strains with similar functions.